Whatsapp icon Whatsapp

Definição de módulo de um número real

Podemos dizer que módulo é o mesmo que distância de um número real ao número zero, pois o módulo de número real surgiu da necessidade de medir a distância de um número negativo ao zero.
Ao medirmos a distância de um número negativo qualquer ao zero percebe-se que a distância fica negativa e como não é usual dizer que uma distância ou comprimento é negativo foi criado o módulo de número real que torna o valor positivo ou nulo.

Assim, podemos dizer que o módulo de um número real irá seguir duas opções:
• O módulo ou valor absoluto de um número real é o próprio número, se ele for positivo.
• O módulo ou valor absoluto de um número real será o seu simétrico, se ele for negativo.

A representação de um módulo ou valor absoluto de um número real é feito por duas barras paralelas.

Veja o resumo da definição de módulo de um número real abaixo:

|x| = x, se x ≥ 0
-x, se x < 0

Veja alguns exemplos de como calcular módulo ou valor absoluto de números reais.

• |+4| = 4

• |-3| = - (-3) = 3

• |10 – 6 | = |+4| = 4

• |-1 – 3| = |-4| = - (-4) = 4

• |-1| + |5| - |6| = -(-1) + 5 – 6 = 1 + 5 - 6 = 6 – 6 = 0

• - | -8| = -[-(-8)] = - 8

Veja alguns exemplos de como encontrar o módulo de valores desconhecidos.

• |x + 2| nesse caso teremos duas opções, pois não sabemos o valor da incógnita x. Assim, seguimos a definição:
x + 2, se x + 2 ≥ 0, ou seja, x ≥ -2
- (x + 2), se x + 2 < 0, ou seja, x < -2

• |2x – 10|
2x – 10, se 2x – 10 ≥ 0, ou seja, 2x ≥ 10 → x ≥ 5
-(2x – 10), se 2x – 10 < 0, ou seja, 2x < 10 → x < 5

• |x2 – 9|
x 2 – 9, se x2 – 9 ≥ 0
x 2 – 9 ≥ 0
x 2 ≥ 9
x ≥ 3 ou x ≤ -3

- (x 2 – 9) , se x2 – 9 < 0
x2 – 9 < 0
x2 < 9
-3 < x < 3

Concluímos que o módulo de um número real é sempre positivo ou nulo.
Publicado por Danielle de Miranda
Assista às nossas videoaulas

Artigos Relacionados

Fontes de Energia Elétrica
Consumo de Energia Elétrica
Saiba como calcular o consumo médio de energia elétrica de sua casa.
Equação do 2º Grau
Teorema de Bháskara: fórmula resolutiva de uma equação do 2º grau.
Equações Literais
Você sabe o que são as equações literais? Clique aqui e aprenda como resolvê-las.
Equações Matemáticas na Termologia
Fórmulas matemáticas na conversão de temperaturas.
As equações do segundo grau podem ser resolvidas por Bháskara ou por formas alternativas
Equações incompletas do segundo grau
Clique para aprender o que são equações incompletas do segundo grau e conheça maneiras alternativas de resolvê-las.
Expressões algébricas
Aprenda o que é uma expressão algébrica e como fatorá-la. Conheça também o que é um monômio e o que é um polinômio.
Gráfico de uma função modular.
Função modular
Entenda o que é uma função modular e aprenda como elaborar um gráfico para representar esse tipo de função. Resolva exercícios sobre o conteúdo.
Inequação
Entenda o que é uma inequação. Aprenda a encontrar o conjunto de soluções de uma inequação. Conheça os tipos de inequações. Resolva inequações do 1º e do 2º grau.
Saber realizar o jogo de sinais é fundamental para não errar na hora de fazer cálculos
Jogo de sinais
Clique para aprender a usar o jogo de sinais corretamente e nunca mais errar na hora de determinar o sinal do resultado de uma operação!
É fácil visualizar o oposto ou o simétrico de um número na reta numérica
Número oposto ou simétrico
Você sabe o que é número oposto ou simétrico? Acesse e descubra!
Raízes ou zero da função do 2º Grau
Determinando as condições de existência de uma Parábola.
Sistema de equação
Sistema, Equação de 1º grau com duas incógnitas, equação, Adição, Método da adição, Método da substituição, Incógnita, Substituição, Solução de um sistema, Sistema de equação.
Sistemas de Equações: Método da Comparação
Resolução de sistemas utilizando o método da comparação.
O método da substituição é uma das técnicas para solucionar sistemas de equações
Sistemas lineares de equações: método da substituição
Clique para aprender a encontrar a solução de sistemas que possuem duas equações e duas incógnitas pelo método da substituição.
video icon
Biologia
Genética no Enem: leis de Mendel
Genética é sempre um desafio entre os estudantes, seja pela necessidade de noções de probabilidade, seja pela complexidade de interpretação das questões. Mesmo com muitos conceitos, probabilidades e interpretações, as questões de genética que envolvem as leis de Mendel são simples de resolver, mas, para isso, você precisa conseguir reconhecer se uma questão está relacionada com essas leis.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Videoaula Brasil Escola
Inglês
Genitive Case
É hora de aperfeiçoar sua gramática na Língua Inglesa. Assista!
video icon
Videoaula Brasil Escola
Sociologia
Democracia racial
Você sabe o que significa democracia racial? Clique e nós te ensinamos!
video icon
Tigres Asiáticos
Geografia
Tigres Asiáticos
Assista à nossa videoaula sobre os Tigres Asiáticos, e conheça as razões do desenvolvimento rápido desses territórios.