Whatsapp icon Whatsapp

Determinando a Equação Geral da Reta

Os estudos em Geometria Analítica demonstram que uma reta possui representação geométrica no plano cartesiano e pode ser representada por uma equação. Euclides, em seus teoremas e postulados, fundamentalizava que uma reta passa por infinitos pontos e que por dois pontos passa somente uma única reta. Partindo desse princípio estabelecemos que em uma reta os pontos são colineares. Dada uma reta, podemos constituir sua equação geral partindo da definição de localização de dois pontos pertencentes à reta r: ponto A de coordenadas (x1,y1), ponto B de coordenadas (x2,y2) e um ponto Q (x,y)

Usaremos a seguinte matriz na definição da equação geral da reta:

Desenvolvendo o determinante da matriz encontramos a equação geral da reta:

x1y2 + xy1 + x2y – xy2 – x2y1 – x1y = 0
x(y1 – y2) + y(x2 – x1) + (x1y2 – x2y1) = 0

Os valores em x e y são números reais, então podemos considerar a seguinte situação:
y1 – y2 = a
x2 – x1 = b
x1y2 – x2y1 = c

A equação geral da reta: ax + by + c = 0

Exemplo: Determine a equação geral da reta r que passa pelos pontos P(1,1) e X(4,6).

Não pare agora... Tem mais depois da publicidade ;)

1*6*1 + 1*1*x + 1*4*y – 1*6*x – 1*4*1 – 1*y*1 = 0
6 + x + 4y – 6x – 4 – y = 0
– 5x + 3y – 2 = 0

– 5x + 3y + 2 = 0: equação geral da reta que passa pelos pontos P(1,1) e X(4,6)

Publicado por Marcos Noé Pedro da Silva

Artigos Relacionados

Equação de 1º grau com duas incógnitas
Clique aqui e saiba como determinar os valores das equações do 1º grau com duas incógnitas.
Equação equivalente
: Equação, Princípio da igualdade, princípio aditivo da igualdade, Princípio multiplicativo da igualdade, Equações equivalentes, Princípio aditivo da equivalência de equações, Princípio multiplicativo da equivalência de equações.
Equações Literais
Você sabe o que são as equações literais? Clique aqui e aprenda como resolvê-las.
Equações Logarítmicas
Desenvolvendo equações logarítmicas.
Equações de um Móvel com Velocidade Constante
Matemática presente na Física dos movimentos.
Matemática e as equações do movimento uniformemente variado
Relacionando a Matemática e os conceitos físicos do movimento uniformemente variado.
Multiplicação, Divisão e Potenciação de Monômios
Multiplicação, Divisão, Potenciação, Monômios, Monômios semelhantes, Base, Expoentes, Multiplicação de monômios, Divisão de monômios, Potenciação de monômios.
video icon
Texto"Matemática do Zero | Número de diagonais de um polígono convexo" em fundo azul.
Matemática do Zero
Matemática do Zero | Número de diagonais de um polígono convexo
Nessa aula demonstrarei a fórmula do número de diagonais de um polígono convexo e resolveremos questões modelo.