Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria analítica
  4. Posição relativa entre ponto e circunferência

Posição relativa entre ponto e circunferência

O ponto comparado à circunferência pode assumir três posições diferentes, pode ser: externo à circunferência, interno à circunferência ou pertencer à circunferência.

Antes é preciso saber o que é uma circunferência, veja o desenho abaixo que distingue círculo de circunferência:



Portanto, circunferência é o contorno de um círculo. E podemos dizer que no círculo e fora dele e na própria circunferência existem infinitos pontos.

• Ponto externo à circunferência



Podemos concluir que nesse caso o raio é menor que a distância do ponto A ao centro da circunferência.

Então, como dCA > R podemos escrever: (xA – a)2 + (yA – b) > R2

• Ponto interno à circunferência



Podemos concluir que nesse caso o raio é maior que a distância do ponto A ao centro da circunferência.

Então, como dCA < R podemos escrever: (xA – a)2 + (yA – b) < R2

• Ponto pertence à circunferência



Podemos concluir que nesse caso o raio é igual à distância do ponto A ao centro da circunferência.

Então, como dCA = R podemos escrever: (xA – a)2 + (yA – b) = R2

Exemplo: Verifique qual a posição dos pontos P(0,0); Q(1,-4); R(-2,-5) em relação à circunferência de equação x2 + y2 + 2x + 8y + 13 = 0

Deve-se transformar essa equação normal em reduzida.

x2 + y2 + 2x + 8y + 13 = 0
x2 + 2x + y2 + 8y = -13
(x2 + 2x + 1) + (y2 + 8y + 16) = -13 + 1 +16
(x + 1)2 + (y + 4)2 = 4

Agora, com essa equação reduzida da circunferência, iremos substituir cada ponto os termos de x e y.

• P(0,0)
(0+ 1)2 + (0 + 4)2 = 4
12 + 42 = 4
1 + 16 = 4
17 > 4

Portanto, o ponto P é externo à circunferência

• Q(1,-4)
(1+ 1)2 + ((-4) + 4)2 = 4
22 + 02 = 4
4 = 4

Portanto, o ponto Q pertence à circunferência.

• R(-2,-5)
((-2)+ 1)2 + ((-5) + 4)2 = 4
(-1)2 + (-1)2 = 4
1 + 1 = 4
2 < 4

Portanto, o ponto R é interno à circunferência.

Não pare agora... Tem mais depois da publicidade ;)
Publicado por: Danielle de Miranda
Assista às nossas videoaulas
Assuntos relacionados
Ponto médio de um seguimento de reta
: Segmento de reta, reta, pontos, o que é segmento de reta, representação de um segmento de reta, Ponto médio, ponto médio de um segmento de reta, abscissas, coordenadas.
Equações paramétricas
equações, equação geral da reta, forma geral da reta, equações paramétricas da reta, formas paramétricas da reta, parâmetro, como formar as equações paramétricas de uma reta.
Posição relativa entre duas circunferências
circunferências tangentes, secantes, externas, internas e concêntricas
Ângulo formado entre duas retas
Como determinar a medida do ângulo entre duas retas
Distância entre dois pontos em um mapa
Distância entre dois pontos no espaço
Clique para aprender a calcular a distância entre dois pontos no espaço e o modo como ela é obtida pelo Teorema de Pitágoras!
Planos paralelos e perpendiculares formando um cubo
Posição relativa entre planos
Aprenda as posições relativas entre dois planos no espaço e o resultado da interação entre eles: com pontos ou não na intersecção.
Reta tangente, externa ou secante são as posições entre reta e circunferência
Posição relativa entre uma reta e uma circunferência
Clique para aprender a posição relativa entre uma reta e uma circunferência e conheça também algumas de suas propriedades.
Cálculo do coeficiente angular
ângulo, reta, condição de existência da reta, pontos, plano cartesiano, tangente, inclinação da reta, como encontrar a inclinação da reta, coeficiente angular, tangente do ângulo, cálculo do coeficiente angular.
Reconhecendo uma circunferência
Equação, equação reduzida da circunferência, circunferência, distância entre dois pontos, pontos genéricos, Pontos genéricos de uma circunferência, raio da circunferência, equação normal da circunferência, coeficientes iguais e diferentes de zero, Reconhecendo uma circunferência.
Equação da hipérbole
Estudo analítico da hipérbole e seus elementos