Whatsapp icon Whatsapp

Reconhecendo uma circunferência

Para reconhecer uma circunferência é preciso levar em consideração a definição de uma equação do segundo grau com duas incógnitas, pois se observarmos uma equação normal ou reduzida da circunferência perceberemos que são exemplos desse tipo de equação.

Veja a forma geral de uma equação do segundo grau com duas incógnitas.

Ax2 + By2 + Cxy + Dx + Ey + F = 0

Nem todas as equações do segundo grau com duas incógnitas podem ser consideradas equações da circunferência, é preciso que seus coeficientes (A,B,C,D,E,F) obedeçam algumas condições, veja quais são elas:

É preciso saber que os coeficientes A, B, C, D, E, F pertencem ao conjunto dos reais e que A, B e C não são simultaneamente nulos.

• Os coeficientes A e B devem ser iguais e diferentes de zero (A=B ≠ 0)
• O coeficiente C dever ser igual à zero (C = 0).
• Em uma equação da circunferência escrita na sua forma reduzida, o valor do segundo membro da igualdade deverá ser um valor positivo: (x – a)2 + (y – b)2 = k; k > 0.

Exemplo: verifique se a equação x2 + 3y2 – 6x + 4y - 9 = 0 pode ser considerada uma equação da circunferência.

É preciso que verifiquemos todas as condições, mas nesse caso a primeira já elimina a possibilidade de ser uma equação da circunferência, pois os coeficientes de x2 e y2 são diferentes.

Exemplo: verifique se a equação x2– 6x - 4y +1 = 0 pode ser considerada uma equação da circunferência.

Nesse caso apenas a primeira condição elimina essa possibilidade, pois o coeficiente de y2 é igual a zero.

Exemplo: verifique se a equação -x2 - y2 + 8x -7 = 0 pode ser considerada uma equação da circunferência.

Essa equação será considerada uma equação da circunferência, pois satisfaz todas as condições:

• Os coeficientes de x2 e y2 são todos iguais e diferentes de zero.
• O coeficiente de xy é igual a zero.
• Passando a equação -x2 - y2 + 8x -7 = 0 para a forma reduzida iremos verificar a última condição:

-x2 - y2 + 8x -7 = 0 (-1)
x2 + y2 - 8x +7 = 0
(x2 - 8x) + (y2 +0y) = -7
(x2 - 8x + 16) + (y2 +0y) = -7 +16
(x2 - 8x + 16) + (y2 +0y + 0) = -7 +16 + 0
(x + 4)2 + (y + 0)2 = 9

Como 9 > 0, a equação representa uma circunferência.
Publicado por Danielle de Miranda

Artigos Relacionados

Cálculo do coeficiente angular
ângulo, reta, condição de existência da reta, pontos, plano cartesiano, tangente, inclinação da reta, como encontrar a inclinação da reta, coeficiente angular, tangente do ângulo, cálculo do coeficiente angular.
Distância entre dois pontos em um mapa
Distância entre dois pontos no espaço
Clique para aprender a calcular a distância entre dois pontos no espaço e o modo como ela é obtida pelo Teorema de Pitágoras!
Equação geral da circunferência
Conheça a equação geral da circunferência e aprenda a encontrá-la a partir do gráfico. Confira ainda exercícios resolvidos sobre o tema!
Podemos encontrar a equação geral da reta representada no plano cartesiano.
Equação geral da reta
Conheça a equação geral da reta e aprenda a representá-la graficamente. Confira ainda exercícios resolvidos sobre o assunto.
Interseção de reta e circunferência
distância entre ponto e reta, Posições relativas entre uma reta e uma circunferência, circunferência, reta, reta externa à circunferência, reta interna à circunferência, reta secante à circunferência.
Ponto médio de um segmento de reta
Veja como determinar o ponto médio de um segmento de reta.
Posição relativa entre ponto e circunferência
distância entre dois pontos, distância entre ponto e reta, Posições relativas entre um ponto e uma circunferência, circunferência, reta, ponto comparado à circunferência, ponto externo à circunferência, ponto interno à circunferência, ponto pertencente à circunferência.
video icon
Matemática
Teorema da bissetriz interna
Nesta aula estudaremos o teorema da bissetriz interna, o qual afirma que a bissetriz interna de um triângulo divide o lado oposto em segmentos proporcionais aos lados adjacentes. Além disso, resolveremos questões sobre esse assunto.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas.