Whatsapp icon Whatsapp

Propriedades das Proporções

As propriedades das proporções auxiliam-nos a resolver problemas entre razões e proporções.
Para esse exemplo, temos a definição: “O produto dos extremos é igual ao produto dos meios”
Para esse exemplo, temos a definição: “O produto dos extremos é igual ao produto dos meios”

A razão entre dois números é dada pela divisão desses números, por exemplo, a razão entre a e b é dada por a/b. Quando estabelecemos uma relação de igualdade entre duas razões, temos uma proporção. Suponha a seguinte proporção:

  a   =   c  
b        d

Essa proporção pode ser expressa da seguinte forma:

a : b = c : d

Os itens em vermelho são classificados como extremos e os itens em azul são os meios.

Temos então a Propriedade Fundamental das Proporções, que nos garante que “o produto dos extremos é igual ao produto dos meios”. Essa propriedade é comumente chamada de multiplicação cruzada. Vejamos:

  a   =    c  
b         d

a.d = b.c

Mas além dessa, temos outras propriedades que podem nos ajudar muito a resolver problemas com proporções, são elas:

a) Trocar os extremos

   a    =    c    ←→    d    =     c   
 
b          d              b           a

a.d = b.c ←→ d.a = b.c

b) Trocar os meios

   a    =     c    ←→    a    =    b   
 b          d               c          d

a.d = b.c ←→ a.d = c.b

c) Inverter as duas razões

   a    =     c    ←→     c    =     d   
 b           d               a           b

a.d = b.c ←→ c.b = a.d

d) Trocar a posição das duas razões

   a    =    c    ←→    c    =    a   
 b          d              d          b

Não pare agora... Tem mais depois da publicidade ;)

a.d = b.c ←→ c.b = d.a

A partir dessas propriedades das proporções, chegamos a duas importantes relações entre razões:

   a    =    c   ←→    a + c    =    a    ou    a + c   =    c   
 b          d             d + b          b           d + b         b

   a    =    c   ←→    a – c   =    a    ou    a – c    =    c   
 b          d             d – b         b            d – b         b

Exemplos:

1. Se    x    =    y    e x + y = 15, calcule o valor de x e de y.
            4          6

   a    =    c    ←→    a + c    =    a   
 b          d              d + b          b

Temos a seguinte proporção

  x   =    y  
4         6

Aplicando a propriedade destacada, temos:

   x + y   =    x  
 6 + 4         4

Mas nós temos a informação de que x + y = 15, substituindo x + y na proporção anterior, temos:

  15  =    x  
 10        4

Aplicando a Propriedade Fundamental das Proporções, temos que o produto dos extremos é igual ao produto dos meios, portanto:

15.4 = x.10

x.10 = 15.4

x.10 = 60

x = 60
      10

x = 6

2. Vamos resolver a proporção da imagem inicial do texto? Para resolvê-la, aplicaremos a Propriedade Fundamental das Proporções.

   10    =   12  
x + 10      2x

10 . 2x = 12. ( x + 10 )

20x = 12x + 120

20x – 12x = 120

8x = 120

x = 120
       8
x = 15

Publicado por Amanda Gonçalves Ribeiro
Assista às nossas videoaulas

Artigos Relacionados

Proporção
Conheça tudo sobre proporção: aprenda a verificar se os valores são proporcionais ou não e entenda o que são grandezas direta e inversamente proporcionais.
Razão
Clique aqui, descubra o que é e como representar a razão entre dois números e entenda a diferença entre razão e proporção.
Resolvendo Proporções
Resolvendo proporções pela regra prática.
video icon
"Código de Hamurabi" escrito sobre fundo vermelho, ao lado há uma escultura de pedra antiga
História
Código de Hamurabi
Assista a nossa videoaula para conhecer a história do Código de Hamurabi, um dos primeiros códigos de leis escritas da humanidade. Confira também no nosso canal outras informações sobre a Antiguidade Oriental.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
videoaula brasil escola
Biologia
Transgênicos
Você sabe o que são alimentos transgênicos? Não se engane, eles estão mais presentes do que você imagina!
video icon
Videoaula Brasil Escola
Química
Alotropia
Não deixe de assistir nossa aula para fixar tudo o que você estudou sobre alotropia!
video icon
Videoaula Brasil Escola
Filosofia
Batman
Que tal assistir ao vídeo para uma análise ética sobre o herói?