Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria analítica
  4. Equação Normal da Circunferência

Equação Normal da Circunferência

Equação normal da circunferência pode ser feita através de dois métodos: comparação e redução.

Temos que a equação da circunferência se apresenta na forma reduzida ou na forma normal. A forma reduzida é expressa por (x – xC)² + (y – yC)² = r², onde xC e yC são as coordenadas do centro da circunferência, r o raio e x e y coordenadas de um ponto P posicional da circunferência. A equação normal da circunferência é obtida através da eliminação dos parênteses e redução dos termos semelhantes.

(x – a)² + (y – b)² = r²
x² – 2xa + a² + y² – 2yb + b² – r² = 0
x2 + y2 – 2ax – 2by + a2 + b2 – r2 = 0

Essa equação é mais uma forma de equacionar uma circunferência e a partir dela determinar o centro e o raio que a equação está representando, isso poderá ser feito utilizando dois métodos diferentes: comparação e redução.

Comparação

Dada a equação x2 + y2 – 2x + 8y + 8 = 0, comparado-a com a equação x2 + y2 – 2ax – 2by + a2 + b2 – r2 = 0, temos:

–2a = –2
a = 1

–2b = 8
2b = –8
b = –4

a2 + b2 – r2 = 8
12 + (–4)2 – r2 = 8
1 + 16 – r2 = 8
17 – r2 = 8
– r2 = 8 – 17
– r2 = – 9
r = 3

Portanto, a circunferência de equação igual a x2 + y2 – 2x + 8y + 8 = 0 terá centro igual a C(1,– 4) e raio igual a r = 3.


Redução

Consiste em transformar a equação normal em reduzida e assim identificar o centro e o raio.

Pegando como exemplo a equação x2 + y2 – 2x + 8y + 8 = 0, iremos transformá-la em uma equação reduzida seguindo os passos abaixo:

1º passo

É preciso agrupar os termos em x e os termos em y, e isolar o termo independente.
(x2 – 2x) + (y2 + 8y) = – 8

2º passo

Somar aos dois membros da igualdade um termo que torne o agrupamento em x um quadrado perfeito.

(x2 – 2x +1) + (y2 + 8y) = – 8 +1

3º passo

Somar aos dois membros da igualdade um termo que torne o agrupamento em y um quadrado perfeito.

(x2 – 2x +1) + (y2 + 8y + 16) = – 8 +1 + 16

(x2 – 2x +1) + (y2 + 8y + 16) = 9

(x – 1)2 + (y + 4)2 = 9

Comparando com a equação reduzida.

(x – 1)2 + (y + 4)2 = 9

(x + a)2 + (y + b)2 = r2


Portanto, o centro dessa equação da circunferência será C (1, –4) e R = 3.

Não pare agora... Tem mais depois da publicidade ;)
Publicado por: Marcos Noé Pedro da Silva
Assuntos relacionados
Reconhecendo uma circunferência
Equação, equação reduzida da circunferência, circunferência, distância entre dois pontos, pontos genéricos, Pontos genéricos de uma circunferência, raio da circunferência, equação normal da circunferência, coeficientes iguais e diferentes de zero, Reconhecendo uma circunferência.
Distância entre dois pontos em um mapa
Distância entre dois pontos no espaço
Clique para aprender a calcular a distância entre dois pontos no espaço e o modo como ela é obtida pelo Teorema de Pitágoras!
Equação geral da reta
Ponto, reta, plano cartesiano, coeficiente angular, equação fundamental da reta, como encontrar a equação fundamental da reta, o que é equação fundamental da reta, demonstração da equação fundamental da reta, equação geral da reta, como encontrar a equação geral da reta
Generalidades sobre as equações da reta
Generalidades sobre as equações da reta, Forma geral da reta, equação geral da reta, Forma reduzida da reta, equação reduzida da reta, Forma paramétrica da reta, equação paramétrica da reta.
Equação reduzida de uma circunferência
Equação, equação reduzida da circunferência, circunferência, distância entre dois pontos, pontos genéricos, Pontos genéricos de uma circunferência, raio da circunferência.