Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Matrizes e Determinantes
  4. Sistemas e Equações Lineares

Sistemas e Equações Lineares

Equações Lineares

As equações do tipo a1x1 + a2x2 + a3x3 + .....+ anxn = b, são equações lineares, onde a1, a2, a3, ... são os coeficientes; x1, x2, x3,... as incógnitas e b o termo independente.
A equação 4x – 3y + 5z = 31 é uma equação linear. Os coeficientes são 4, –3 e 5; x, y e z as incógnitas e 31 o termo independente.
Para x = 2, y = 4 e z = 7, temos 4*2 – 3*4 + 5*7 = 31, concluímos que o terno ordenado (2,4,7) é solução da equação linear
4x – 3y + 5z = 31.

Para x = 1, y = 0 e z = 3, temos 4*1 – 3*0 + 5*3 ≠ 31, concluímos que o terno ordenado (1,0,3) não é solução da equação linear
4x – 3y + 5z = 31.

Sistemas Lineares

Dizemos que o conjunto de equações lineares forma um sistema linear.

Exemplos 

2x + 3y = 10
x – 5y = 2

Sistema linear com duas equações e duas incógnitas.

5x – 6y – 2z = 15
9x – 10y + 5z = 20

Sistema linear com duas equações e três incógnitas.

x + 9y + 6z = 20
3x – 10y – 12z = 5
-x + y + z = 23

Sistema linear com três equações e três incógnitas.

x+ y + z + w = 36
2x – y +2z + 9w = 40
-5x + 3y – 5z + 5w = 16

Sistema linear com três equações e quatro incógnitas.

O sistema linear abaixo admite o terno ordenado (1, 2, 3) como solução.

x + 2y – z = 2
2x – y + z = 3
x + y + z = 6


1 + 2*2 – 3 = 2 → 1+ 4 – 3 = 2 → 2 = 2
2*1 – 2 + 3 = 3 → 2 – 2 + 3 = 2 → 3 = 3
1 + 2 + 3 = 6 → 6 = 6



No entanto, ele não admite como solução o terno ordenado (1, 2, 4).
1 + 2*2 – 4 = 2 → 1+ 4 – 4 = 2 → 1 + 0 = 2 → 1 ≠ 2
2*1 – 2 + 4 = 3 → 2 – 2 + 4 = 2 → 0 + 4 = 3→ 4 ≠ 3
1 + 2 + 4 = 6 → 7 ≠ 6

Não pare agora... Tem mais depois da publicidade ;)
Publicado por: Marcos Noé Pedro da Silva
Assista às nossas videoaulas
Assuntos relacionados
Solução de um Sistema Utilizando a Regra de Cramer
Utilizando a regra de Cramer.
Matriz triangular é um caso especial de matriz quadrada e pode ser classificada em triangular superior ou triangular inferior
Matriz Triangular
Saiba mais sobre a matriz triangular e aprenda a calcular seu determinante.
Parafusos predispostos em forma de matriz
Matriz simétrica
O estudo das matrizes quadradas nos leva a matrizes com propriedades especiais. Para compreendermos as matrizes simétricas perpassaremos pelos conceitos de matriz transposta e igualdade de elementos de uma matriz.
Sistemas lineares de duas incógnitas e duas equações podem ser resolvidos pelo método da adição
Método da adição para sistemas com duas equações e duas incógnitas
Clique para descobrir como utilizar o método da adição para resolver sistemas com duas equações e duas incógnitas.
O método da substituição é uma das técnicas para solucionar sistemas de equações
Sistemas lineares de equações: método da substituição
Clique para aprender a encontrar a solução de sistemas que possuem duas equações e duas incógnitas pelo método da substituição.
Matriz oposta e Matriz Transposta
matriz, Matriz transposta, Matriz Oposta, Oposto de um número, Representação de uma matriz transposta, Matriz simétrica, Representação de uma matriz oposta.
Menor complementar
matriz, matriz quadrada, ordem de matriz, elemento de uma matriz, cálculo do menor complementar, menor complementar de um elemento, como calcular o menor complementar de uma matriz, como calcular o menor complementar de um elemento, determinante.
Matriz inversa
Encontrando a matriz inversa através de um produto e igualdade de matrizes. Para calcular a matriz inversa é necessário compreender multiplicação de matrizes e igualdade de matrizes