Onda periódica e sua equação

A corda da figura acima está esticada, sendo o ponto F a fonte de ondas periódicas
A corda da figura acima está esticada, sendo o ponto F a fonte de ondas periódicas

Nos estudos a respeito de ondas periódicas vimos que um movimento oscilatório nada mais é do que um movimento periódico, ou seja, trata-se de um movimento que se repete continuamente de um modo idêntico. Vimos também que as ondas transversais são aquelas que têm a direção de propagação perpendicular à direção de vibração, como, por exemplo, as ondas eletromagnéticas.

Sendo assim, vamos considerar a figura acima, na qual temos uma corda elástica esticada. Na figura podemos ver o ponto F: esse ponto na corda representa a fonte que produz as ondas periódicas transversais. Temos também o ponto O, que representa a origem do sistema xOy; e P, que é um ponto da corda escolhido aleatoriamente.

Vamos considerar que inicialmente t = 0. Sendo assim, podemos dizer que o ponto F executará um movimento harmônico simples de amplitude A e fase inicial θ0, de modo que a ordenação y de F variará com o tempo, seguindo a equação do MHS:

y=A.cos (ω.t+ θ0)

Se considerarmos que não haverá perda de energia durante a propagação da onda pela corda, durante um intervalo de tempo (Δt), podemos dizer que o ponto P, localizado no meio da corda, também executará um MHS com mesma amplitude A, porém atrasado Δt em relação a F.

O tempo que a onda levou para chegar até o ponto P é dado por Δt. Sendo assim, temos:

Na equação acima o valor de x corresponde ao valor da abscissa de P; e v é a velocidade de propagação da onda.

Sendo assim, podemos dizer que o ponto P possui ordenada y, dada pela função do tempo:

y=A.cos[ω.(t-∆t)+θ0 ]

Como sabemos que ω = 2πf e que Δt = x/v, temos:

Substituindo

, segue:

Para cada ponto da corda, a abscissa x é fixa e a ordenada y varia em função do tempo, de acordo com essa função.

Publicado por Domiciano Correa Marques da Silva
Enem
O que você precisa saber sobre o ProUni 2024
O ProUni, Programa Universidade para Todos, oferece bolsas de estudo em instituições de ensino superiores particulares de todo o Brasil. As inscrições são abertas duas vezes, no início de cada semestre. Assista ao vídeo e fique por dentro de como utilizar o programa!
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos