7º caso de fatoração: diferença de dois cubos
O sétimo caso de fatoração é semelhante ao 6º caso, a diferença é na operação entre os dois monômios que aqui nesse caso é uma subtração (diferença).
Observe a demonstração abaixo:
Dado dois números quaisquer x e y. Se subtrairmos ficará: x – y, se montarmos uma expressão algébrica com os dois números obteremos: x2 + xy + y2, assim, devemos multiplicar as duas expressões encontradas.
(x - y) (x2 + xy + y2) é necessário utilizar a propriedade distributiva;
x3 + x2y + xy2 - x2y –xy2 - y3 unir os termos semelhantes;
x3 - y3 é uma expressão algébrica de dois termos, os dois estão elevados ao cubo e subtraídos.
Assim, podemos concluir que x3 - y3 é uma forma geral da soma de dois cubos onde
x e y podem assumir qualquer valor real.
A forma fatorada de x3 - y3 será (x - y) (x2 + xy + y2).
Com o conhecimento de todos os casos de fatoração, quando for preciso fatorar alguma expressão algébrica devemos sempre observar em qual dos casos ela se enquadra, veja os exemplos de como fazer esse reconhecimento.
Exemplo:
Se tivermos que fatorar a seguinte expressão algébrica 27x3 – y3 devemos observar que ela tem dois termos. Lembrando dos casos de fatoração, o único caso que fatora dois termos é a diferença de dois quadrados, soma de dois cubos e a diferença de dois cubos.
No exemplo acima os dois termos estão ao cubo e entre eles há uma subtração, então devemos utilizar o 7º caso de fatoração (diferença de dois cubos), para fatorarmos devemos escrever a expressão algébrica 27x3 – y3 da seguinte forma:
(x - y) (x2 + xy + y2). Ao tirar as raízes cúbicas dos dois termos, temos: 27x3 – y3.
A raiz cúbica de 27x3 é 3x e a raiz cúbica de y3 é y. Agora, basta substituir valores, no lugar de x colocaremos 2x e no lugar de y colocaremos 3 na forma fatorada
(x - y) (x2 + xy + y2) , ficando assim:
(3x – y) ((3x)2 + 3x . y + y2)
(3x – y) (9x2 + 3xy + y2)
Então, (2x – 3) (4x2 + 6x + 9) é a forma fatorada da expressão algébrica 8x3 – 27.
Exemplo 2
Para resolvemos a fatoração utilizando a diferença de dois cubos devemos seguir os mesmos passos do exemplo anterior. Fatorando a expressão algébrica r3 – 64 temos: As raízes cúbicas de r3 é r e de 64 é 4, substituindo teremos no lugar de x o r e no lugar de y o 4.
(r – 4) (r2 + 4r + 16) é a forma fatorada de r3 – 64.
Publicado por Danielle de Miranda
Artigos Relacionados
2º caso de fatoração: Agrupamento
Fator comum, Expressão algébrica, Termo em evidência, Fatoração, Fatoração de expressão algébrica, Agrupamento, 2º caso de fatoração, Caso de fatoração, Agrupamento de termos semelhantes.
5º caso de fatoração: Diferença de dois quadrados
Fatoração de expressão algébrica, Binômio, O que é binômio, Forma fatorada da expressão algébrica, Soma e produto de expressões, 5º caso de fatoração, subtração.
História
Grécia Antiga: Os Cretenses
Assista à nossa videoaula para conhecer a história dos cretenses. Confira também, no nosso canal, outras informações sobre a Grécia Antiga.
Últimas notícias
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos
Teorias evolucionistas
As teorias apresentam como ponto principal a defesa de que os organismos do planeta sofrem modificações ao longo do tempo.
Osmose
Osmose é um processo de movimentação da água através de uma membrana semipermeável.
Coluna vertebral
Estrutura que forma o eixo do corpo, garante a sustentação e a movimentação do corpo.
Operações matemáticas básicas
São elas a adição, a subtração, a multiplicação e a divisão.
Números
Os números são utilizados para representar quantidades, ordem e medidas.
Inflação
O aumento acentuado dos preços é uma característica da inflação.
O que são big techs?
Big techs são grandes empresas de tecnologia que dominam o cenário global de produção de informações.
Patrimônio cultural
Os patrimônios culturais, são importantes registros materiais ou imateriais da história de um povo.
Quilombolas
Quilombolas são membros remanescentes das comunidades chamadas quilombos.
Fontes de energia
Energia das Marés
Entenda como a força gravitacional do Sol e da Lua interferem nas marés.
Mecânica
Plano inclinado com atrito
Decompor as forças é uma das etapas para cálculos que envolvem o plano inclinado com atrito.
Ondulatória
Função de onda
Ao estudarmos as ondas vimos que elas têm origem em meios elásticos, como em cordas, na superfície da água, do ar, entenda.
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.