Ângulos complementares e suplementares

Ângulos complementares são aqueles cuja soma resulta em 90°. Já os ângulos suplementares são aqueles cuja soma é igual a 180°.
Transferidor e alguns exemplos de ângulos
Transferidor e alguns exemplos de ângulos

Existem alguns ângulos, chamados de ângulos notáveis, que ocorrem com bastante frequência nos cálculos. O ângulo reto (90°) e ângulo raso (180°) são dois exemplos deles. Quando temos dois ângulos cuja soma é igual a 90°, eles são chamados de complementares; já quando tempos dois ângulos cuja soma é igual a 180º, eles são chamados de suplementares.

Além disso, quando dois ângulos diferentes compartilham uma semirreta, um vértice e não possuem mais pontos em comum, são chamados de adjacentes. Observe o exemplo de ângulos adjacentes, retos e rasos:


Ângulos adjacentes, ângulo reto e ângulo raso, respectivamente

Ângulos complementares

Se a soma entre os ângulos α e β é igual a 90°, dizemos que α e β são complementares. Por exemplo:

Os ângulos acima são complementares porque, ao somá-los, o resultado obtido é 90°. Sabendo que dois ângulos são complementares, é possível encontrar a medida de um deles a partir da medida do outro. Observe:

Sabendo que os ângulos α = 72° e β são complementares, determine a medida do ângulo β.

α + β = 90° (são complementares)

72° + β = 90°

β = 90° – 72°

β = 18°

Essa expressão pode ser tratada como uma equação em que β é a incógnita.

Quando os ângulos complementares também são adjacentes, dizemos que:

  • Eles são complementares adjacentes;

  • Formam um único ângulo de 90° graus.

Ângulos suplementares

Se a soma entre os ângulos γ e θ é igual a 180°, dizemos que γ e θ são suplementares. Por exemplo:


Ângulos cuja soma resulta em 180°

Os ângulos da imagem acima são suplementares porque a soma de suas medidas é igual a 180°.Sabendo que dois ângulos são suplementares, é possível encontrar a medida de um deles a partir da medida do outro. Por exemplo:

Sabendo que o ângulo γ = 128° e o ângulo θ são suplementares, determine a medida de θ.

γ + θ = 180°

128° + θ = 180°

θ = 180° – 128°

θ = 52°

Quando dois ângulos, além de suplementares, são adjacentes, eles:

  • São chamados adjacentes suplementares;

  • Juntos formam um único ângulo de 180°.

Publicado por Luiz Paulo Moreira Silva
Sociologia
Friedrich Engels
Veja nesta videoaula uma breve biografia de Friedrich Engels, um dos maiores nomes do marxismo.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos