Retas

Retas são figuras geométricas primitivas que não possuem definição. São formadas por pontos e são infinitas em qualquer direção.

Retas são figuras geométricas primitivas formadas por conjuntos de pontos. O fato de serem primitivas significa que não existe uma definição para elas, contudo, aceitamos que retas são linhas que não fazem curva. Essa aceitação ocorre em virtude das propriedades da reta, que serão expostas e discutidas a partir de agora.

As retas são infinitas. Isso significa que, dados dois pontos distintos de uma reta, sempre existirá um ponto entre eles também pertencente a essa reta. O resultado disso é que as retas possuem comprimento infinito. Dessa maneira, caso caminhássemos sobre uma reta a fim de encontrar seu último ponto, jamais terminaríamos a caminhada.

Para desenhar uma reta, só são necessários dois pontos. Esse é mais um postulado proveniente da geometria.

São necessários apenas dois pontos para desenhar uma reta
São necessários apenas dois pontos para desenhar uma reta

Uma reta é uma figura geométrica que possui uma única dimensão. Isso significa que só é possível tomar uma medida de qualquer objeto definido dentro de uma reta. Essa medida é o comprimento, e os possíveis objetos, além do ponto, são:

Semirretas

Uma semirreta é uma parte da reta obtida da seguinte maneira: sobre uma reta qualquer, desenhe os pontos A e B, de modo que o ponto A faça um corte na reta. O pedaço da reta que se inicia em A e segue em direção ao ponto B (e, é claro, continua infinitamente após ele) é chamado de semirreta. Dessa maneira, pode-se comparar uma semirreta à metade de uma reta.

Semirreta com início em A e em direção a B
Semirreta com início em A e em direção a B

Não pare agora... Tem mais depois da publicidade ;)

Segmento de reta

Segmentos de reta possuem fundamento parecido com o da semirreta. A diferença está no fato de o segmento de reta possuir início e fim, diferentemente da semirreta, que só possui um ponto de início, mas não possui fim.

Um segmento de reta é apenas uma parte da reta. Ele pode ser obtido desenhando-se os pontos A e B sobre uma reta qualquer. Tanto o ponto A quanto B fazem um corte na reta e o pedaço dela que vai do ponto A até o ponto B é chamado de segmento de reta. Observe:

Classificação de retas

Duas retas podem ser classificadas de acordo com a quantidade de pontos que possuem em comum. Observe:

Retas paralelas:

Retas que não possuem nenhum ponto em comum.

Retas transversais:

São retas que possuem um único ponto em comum. O exemplo mais importante de retas transversais são as retas perpendiculares, que são aquelas que formam um ângulo de 90°.

Retas transversais que formam um ângulo de 90°, isto é, retas perpendiculares

Retas coincidentes:

Retas que possuem dois pontos em comum. Existe um resultado que garante que quaisquer retas que possuam dois ou mais pontos em comum serão a mesma reta. Dessa maneira, se duas retas possuem dois pontos em comum, então desde o início existia uma única reta.

Segmento de reta que começa em A e vai até B
Segmento de reta que começa em A e vai até B
Publicado por: Luiz Paulo Moreira Silva
Assuntos relacionados
Tubos cilíndricos usados na construção civil
Cilindros
Clique e aprenda o que são cilindros, quais os seus elementos e sua classificação e veja as fórmulas para calcular a área e o volume desses sólidos.
Cinco classes de poliedros regulares
Poliedros regulares
Clique para conhecer as principais características dos poliedros regulares.
Enem: porta de entrada para a Universidade
Três conteúdos básicos de Matemática para o Enem
Clique para fazer uma revisão de três conteúdos básicos de Matemática para o Enem!
Todas as posições relativas entre reta e plano presentes na mesma ilustração
Posições relativas entre reta e plano
Clique para aprender o que são retas contidas no plano, secantes ou paralelas a ele: as chamadas posições relativas entre reta e plano.
Planos paralelos e perpendiculares formando um cubo
Posição relativa entre planos
Aprenda as posições relativas entre dois planos no espaço e o resultado da interação entre eles: com pontos ou não na intersecção.
Análise da posição ocupada pela reta em comparação com algum plano
Posição relativa entre reta e plano
Entenda a posição relativa entre reta e plano e alguns resultados existentes envolvendo esses dois objetos matemáticos.
Imagem composta por diversos retângulos de tamanhos variados
Retângulos
Descubra o que é retângulo e algumas características básicas que ele possui, decorrentes de sua definição e da família de figuras a que eles pertencem.
Ângulos dados em graus que podem ser representados por seus submúltiplos
Adição de submúltiplos do grau
Aprenda a realizar a adição dos submúltiplos do grau, além de obter informações básicas sobre eles.
Figura formada apenas por losangos
Losangos
Clique para aprender o que é losango e uma série de características e propriedades herdadas de outras figuras geométricas da mesma família.
Cubo: sólido geométrico formado por faces quadradas
Quadrados
Clique e descubra as características dos quadrados e algumas de suas propriedades que são herdadas de outras figuras geométricas.
Ângulos notáveis e alguns instrumentos que os representam
Ângulos
Clique para aprender o que são ângulos, como medi-los e algumas características dos ângulos notáveis.
Projeções ortogonais: problemas que exigem o uso do raciocínio lógico
Projeções ortogonais
Clique para conferir o que são projeções ortogonais sobre o plano, os casos mais básicos dessas projeções e uma questão do Enem sobre o assunto.
Retângulo, paralelogramo e trapézio
Quadriláteros
Aprenda o que são quadriláteros e as características e propriedades que os definem como paralelogramos, trapézios ou nenhum dos dois.
A superfície da mesa representa parte de um plano
O que é plano?
Clique e aprenda o que é um plano, os postulados que garantem sua existência e como construí-los.
Trapézios são quadriláteros e, portanto, polígonos
Trapézios
Clique e aprenda a definição de trapézios, suas características específicas e como calcular sua área e perímetro.
A régua é um exemplo de reta numérica usada para medir pequenas distâncias
Reta numérica dos números reais
Clique para aprender o que é reta numérica, como elas podem ser construídas e quais propriedades elas possuem.
Sólidos geométricos espaciais sobre um plano
Noções primitivas de Geometria: ponto, reta, plano e espaço
Clique para saber mais sobre as noções primitivas de Geometria (reta, ponto, plano e espaço), além de conhecer suas propriedades.
A soma dos ângulos internos de um triângulo é fixa
Soma dos ângulos internos de um triângulo
Clique para entender a soma dos ângulos internos de um triângulo e para obter exemplos dessa soma e a demonstração desse resultado.
Esquema que ilustra a superfície de uma esfera
Área da esfera
Aprenda a calcular a área de superfícies esféricas e de fusos esféricos por meio de fórmulas ou regras de três.
Ângulos alternos internos ocupam posições alternadas no interior de retas paralelas
Ângulos alternos internos e externos
Clique e descubra o que são ângulos alternos internos e alternos externos, bem como as propriedades que eles possuem.
O círculo trigonométrico representa medidas de seno, cosseno e tangente
Seno, cosseno e tangente
Clique e aprenda o que é seno, cosseno e tangente, além de conferir alguns exemplos dessas razões trigonométricas!
Pirâmide encontrada no museu do Louvre, em Paris
O que é pirâmide?
Clique para entender o que é uma pirâmide, além de obter sua definição formal, seus elementos e classificação.
A diagonal de um quadrado é um segmento que liga vértices
Diagonal do quadrado
Clique para aprender duas formas de calcular a diagonal de um quadrado e veja alguns exemplos desses cálculos.
A esfera possui alguns elementos característicos
Elementos de uma esfera
Clique e veja quais são os elementos da esfera, como essas figuras geométricas são definidas e alguns cálculos que os envolvem.
Ângulos opostos pelo vértice são congruentes, isto é, possuem medidas iguais
Ângulos opostos pelo vértice
Clique e aprenda o que são ângulos opostos pelo vértice e ângulos adjacentes, bem como as propriedades mais importantes que os envolvem.
Erros de cálculos, interpretação e montagem são os mais comuns na regra de três
Três erros cometidos na regra de três
Clique para ver os três erros mais cometidos na construção e resolução de uma regra de três e meios de evitá-los!
O triângulo equilátero possui três lados congruentes
Propriedades do triângulo equilátero
Clique para aprender as propriedades dos triângulos equiláteros e para obter exemplos do uso dessas propriedades em problemas de Geometria.
É possível calcular a medida da diagonal de blocos retangulares
Diagonal do bloco retangular
Clique e aprenda o que é a diagonal do bloco retangular, qual a fórmula para calculá-la e como essa fórmula é encontrada.
O compasso é um objeto usado para desenhar círculos e circunferências
Elementos do círculo e da circunferência
Clique para aprender os elementos do círculo e da circunferência e obtenha um exemplo de cada uma dessas partes.
Reta tangente, externa ou secante são as posições entre reta e circunferência
Posição relativa entre uma reta e uma circunferência
Clique para aprender a posição relativa entre uma reta e uma circunferência e conheça também algumas de suas propriedades.
A relação entre as cordas de uma circunferência é uma propriedade das relações métricas
Relações métricas na circunferência: relação entre cordas
Clique e aprenda sobre relações métricas na circunferência, propriedades que podem expressar a relação e a proporcionalidade entre cordas.
O hexágono regular é um exemplo de polígono
Polígonos
Aprenda o que são polígonos, descubra algumas das propriedades dessas figuras e entenda a diferença entre polígonos convexos e regulares.
Exemplo de eneágono regular com destaque para um triângulo, que pode ser usado para calcular a área dessa figura
Área do polígono regular
Clique e aprenda a calcular a área de um polígono regular por meio de uma fórmula que utiliza as medidas de seu lado e seu apótema.
A relação entre segmentos secantes na circunferência e triângulos formados por eles é de proporcionalidade
Relação entre segmentos secantes na circunferência
Clique e aprenda qual é a relação existente entre dois segmentos secantes na circunferência e obtenha exemplos dos cálculos desse conteúdo.
As relações métricas podem ser usadas para calcular medidas do hexágono regular inscrito em uma circunferência
Relações métricas no hexágono regular inscrito
Clique e aprenda o que são relações métricas no hexágono regular inscrito e descubra como usá-las para calcular as medidas do lado e do apótema.
Ângulos externos de um hexágono regular
Soma dos ângulos externos de um polígono
Clique para aprender qual é a soma dos ângulos externos de um polígono convexo e veja como é possível obter esse resultado.
Parábolas relacionam-se com funções por meio dos coeficientes
Relação entre os coeficientes e o gráfico de uma função do segundo grau
Clique e aprenda a utilizar a relação entre os coeficientes e o gráfico de uma função do segundo grau para resolver alguns cálculos.
Toda inequação trigonométrica pode ser reduzida a uma inequação e utilizar o ciclo trigonométrico na resolução
Inequações trigonométricas: tgx > k
Clique para aprender a solucionar uma das inequações trigonométricas, tgx > k, por meio do ciclo trigonométrico e da fórmula obtida a partir dele.
É possível solucionar inequações trigonométricas com o auxílio do ciclo trigonométrico
Inequações trigonométricas: senx > k
Clique e descubra como resolver, com o uso do ciclo trigonométrico, senx > k, uma das inequações trigonométricas.
Símbolos usados para representar alguns conjuntos numéricos
O que são conjuntos numéricos?
Descubra o que são conjuntos numéricos e saiba quais são os elementos dos conjuntos dos naturais, inteiros, racionais, irracionais, reais e complexos.
Interseções são os pontos de encontro entre a parábola e a reta
Interseções entre uma reta e uma parábola
Clique e aprenda o que são as interseções entre uma reta e uma parábola e conheça uma maneira de encontrar as coordenadas referentes a esses pontos.
As parábolas são figuras cuja distância de um de seus pontos até o foco é igual à distância desse mesmo ponto até a diretriz
Parábolas
Clique e aprenda o que são parábolas para a Geometria Analítica, conheça seus elementos e saiba encontrar as equações reduzidas dessa figura.
A geometria analítica estuda a geometria por meio de processos algébricos
O que é geometria analítica?
Descubra o que é geometria analítica e entenda como os processos algébricos são utilizados nessa disciplina para estudar a geometria.
Por meio dos pares e ternos ordenados, é possível localizar objetos no espaço
Pares e ternos ordenados
Clique para aprender o que são pares e ternos ordenados e saiba como esses conjuntos numéricos podem ser usados para definir localizações no espaço.
Exemplos de triângulos equiláteros formados por outros três triângulos congruentes obtusângulos
Triângulos
Clique para aprender o que são os triângulos e conheça quais os elementos dessa figura e as suas principais propriedades.
A quantidade de dimensões define e diferencia as figuras planas e espaciais
Diferenças entre figuras planas e espaciais
Clique para aprender as maiores diferenças entre figuras planas e espaciais, como a quantidade de dimensões que as define.
O perímetro é a medida do contorno de figuras geométricas planas
Perímetro
Entenda o que é perímetro e descubra como obter essa medida do contorno de figuras geométricas planas. Veja também algumas variações no cálculo do perímetro de acordo com propriedades específicas das figuras observadas e aprenda a calcular essa medida em figuras que apresentam parte de um polígono e de um círculo.
Cônicas: intersecções entre um plano e um cone
Cônicas
Aprenda o que são cônicas, figuras geométricas formadas pela intersecção de um plano com um cone de revolução. Descubra também quais são as figuras elipse, hipérbole e parábola. Conheça ainda as equações reduzidas de cada uma das cônicas nos casos em que os focos estejam sobre o eixo x ou no eixo y.
Algumas dicas de estudo podem ajudar a resolver as questões de geometria do Enem
Como estudar geometria para o Enem?
Você sabe como estudar geometria para as provas do Enem? Conheça uma estratégia que começa pelo básico, relembrando definições, propriedades e características das figuras geométricas, e crie um roteiro de estudos. Entenda também a importância de fazer exercícios e de programar as revisões desse conteúdo.
Inclinação e coeficiente angular de uma reta
ângulo, reta, condição de existência da reta, pontos, plano cartesiano, tangente, inclinação da reta, como encontrar a inclinação da reta, coeficiente angular, tangente do ângulo
Retas perpendiculares
coeficiente angular, Retas perpendiculares, coeficiente angular de retas perpendiculares, condição de existência de retas perpendiculares, tangente, ângulo de inclinação.
Equação Reduzida da Reta
Veja como determinar a equação reduzida da reta.
Posições relativas de duas retas
Retas, retas paralelas, retas concorrentes, o que são retas paralelas, o que são retas concorrentes, Posições relativas de duas retas, coeficiente angular de retas paralelas, coeficiente angular de retas concorrentes.
Determinando a Equação Geral da Reta
Determinando a equação geral da reta através de matrizes.
Na reta numérica dos números inteiros, os termos positivos ficam do lado direito, e os negativos, do lado esquerdo
Reta numérica dos números inteiros
Aprenda por meio de exemplos como utilizar a reta numérica dos números inteiros. Acesse!