Condição de Alinhamento de Três Pontos

Três pontos estão alinhados se, e somente se, pertencerem à mesma reta.



Para verificarmos se os pontos estão alinhados, podemos utilizar a construção gráfica determinando os pontos de acordo com suas coordenadas posicionais. Outra forma de determinar o alinhamento dos pontos é através do cálculo do determinante pela regra de Sarrus envolvendo a matriz das coordenadas.


Exemplo 1

Dados os pontos A (2, 5), B (3, 7) e C (5, 11), vamos determinar se estão alinhados.

Diagonal principal

2 * 7 * 1 = 14
5 * 1 * 5 = 25
1 * 3 * 11 = 33

Diagonal secundária

1 * 7 * 5 = 35
2 * 1 * 11 = 22
5 * 3 * 1 = 15

Somatório diagonal principal – Somatório diagonal secundária

(14 + 25 + 33)(35 + 22 + 15)

72 – 72 = 0

Os pontos somente estarão alinhados se o determinante da matriz quadrada calculado pela regra de Sarrus for igual a 0.


Exemplo 2

Considerando os pontos A(2, 2), B(–3, –1) e C(–3, 1), verifique se eles estão alinhados.




Diagonal principal

2 * (–1) * 1 = –2
2 * 1 * (–3) = –6
1 * (–3) * 1 = –3

Diagonal secundária

1 * (–1) * (–3) = 3
2 * 1 * 1 = 2
2 * (–3) * 1 = –6

(– 2 – 6 – 3) – (3 + 2 – 6)
– 11 – (–1)
– 11 + 1 = – 10


Pelo resultado do determinante da matriz verificamos que os pontos não estão alinhados.

Por Marcos Noé
Graduado em Matemática

Publicado por Marcos Noé Pedro da Silva
Matemática do Zero
Matemática do Zero | Plano Cartesiano
Nessa aula veremos o que é e para que serve o plano cartesiano.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos