Você está aqui
  1. Mundo Educação
  2. Física
  3. Ondulatória
  4. Oscilador harmônico

Oscilador harmônico

No estudo do movimento harmônico simples, vimos que este se trata de um movimento periódico e oscilatório. Sendo assim, cabe lembrar que um movimento oscilatório é todo movimento no qual uma mesma situação se repete em intervalos de tempos iguais.

Sendo assim, podemos caracterizar um oscilador harmônico como sendo o dispositivo da figura acima. Nele temos um corpo de massa m apoiado sobre uma superfície sem atrito, preso a uma mola helicoidal, ideal, cuja constante elástica vale k. O oscilador encontra-se em equilíbrio na posição O, ou seja, a mola está em seu estado natural.

Caso apliquemos uma força externa sobre o corpo, tentando esticar ou comprimir a mola, e em seguida soltarmos esse corpo, veremos que a massa começa a executar um MHS cujo período vale T. Imaginando que não haja forças dissipativas, o valor x do deslocamento efetuado é chamado de amplitude (a) do MHS. A trajetória retilínea do corpo é orientada; e o ponto O, de equilíbrio, é a sua origem.

Portanto, podemos obter no ponto A com a mola esticada x = +a e com a mola comprimida no ponto B, x = -a. A força  aplicada é, a cada instante, igual, em valor absoluto, à força elástica , expressa por

Fel  = -k.x (lei de Hooke)

Não pare agora... Tem mais depois da publicidade ;)

O sinal de menos significa que a força elástica é restauradora, ou seja, está sempre orientada para a posição O de equilíbrio.

A força elástica assume, nos pontos A e B, seu valor máximo em módulo

Note que, na posição de equilíbrio, ou seja, quando x = 0, a força elástica é nula; e nos extremos A e B, assume o valor máximo em módulo. Como:



m.γ=-k.x

Sendo T o período do MHS, e começando-se a contar o tempo (t = 0) a partir do ponto extremo B, as figuras seguintes representam as posições da partícula a cada um quarto de período, até completá-lo.

Representação das posições da partícula a cada um quarto de período T

De acordo com a figura acima, temos:

1) t=0 ⇒x=-a (v=0)



5) t=T⇒x=-a (v=0)

Nos pontos extremos, a velocidade é nula, pois a partícula está mudando de sentido; e na posição de equilíbrio, a velocidade é máxima.

Partícula de massa m presa a uma mola helicoidal de constante elástica k
Partícula de massa m presa a uma mola helicoidal de constante elástica k
Publicado por: Domiciano Correa Marques da Silva
Assuntos relacionados
Na ultrassonografia, a reflexão de ultrassons é captada para a formação de imagens de fetos e órgãos do corpo
Som, Infrassom e Ultrassom
Você sabia que existem sons tão altos que o ouvido humano não pode captar? Clique aqui e saiba a diferença entre som, infrassom e ultrassom.
Surfista “pegando uma onda”
Ondas
Clique aqui e aprenda o conceito de ondas e como classificá-las de acordo com a natureza e o tipo!
Período e constante elástica
Determinando a relação entre período do MHS e a constante elástica da mola.
Sistema auditivo humano
A Sensibilidade Auditiva
Você sabia que existem sons tão altos que o ouvido humano não é capaz de detectar? Clique aqui e conheça mais sobre a sensibilidade auditiva.
Trabalhadores submetidos a determinados tipos de ruídos devem utilizar protetores auriculares
Intensidade, altura e timbre
Clique aqui para conhecer mais sobre intensidade, altura e timbre, as três qualidades fisiológicas das ondas sonoras.
Notas musicais e partituras
Notas e escalas musicais
Os instrumentos musicais são construídos de modo a reproduzirem as notas de acordo com a escala escolhida. Veja mais sobre notas e escalas musicais.