Whatsapp icon Whatsapp

Ângulos complementares e suplementares

Ângulos complementares são aqueles cuja soma resulta em 90°. Já os ângulos suplementares são aqueles cuja soma é igual a 180°.
Transferidor e alguns exemplos de ângulos
Transferidor e alguns exemplos de ângulos

Existem alguns ângulos, chamados de ângulos notáveis, que ocorrem com bastante frequência nos cálculos. O ângulo reto (90°) e ângulo raso (180°) são dois exemplos deles. Quando temos dois ângulos cuja soma é igual a 90°, eles são chamados de complementares; já quando tempos dois ângulos cuja soma é igual a 180º, eles são chamados de suplementares.

Além disso, quando dois ângulos diferentes compartilham uma semirreta, um vértice e não possuem mais pontos em comum, são chamados de adjacentes. Observe o exemplo de ângulos adjacentes, retos e rasos:

Ângulos adjacentes, ângulo reto e ângulo raso, respectivamente
Ângulos adjacentes, ângulo reto e ângulo raso, respectivamente

Ângulos complementares

Se a soma entre os ângulos α e β é igual a 90°, dizemos que α e β são complementares. Por exemplo:

Os ângulos acima são complementares porque, ao somá-los, o resultado obtido é 90°. Sabendo que dois ângulos são complementares, é possível encontrar a medida de um deles a partir da medida do outro. Observe:

Sabendo que os ângulos α = 72° e β são complementares, determine a medida do ângulo β.

α + β = 90° (são complementares)

Não pare agora... Tem mais depois da publicidade ;)

72° + β = 90°

β = 90° – 72°

β = 18°

Essa expressão pode ser tratada como uma equação em que β é a incógnita.

Quando os ângulos complementares também são adjacentes, dizemos que:

  • Eles são complementares adjacentes;

  • Formam um único ângulo de 90° graus.

Ângulos suplementares

Se a soma entre os ângulos γ e θ é igual a 180°, dizemos que γ e θ são suplementares. Por exemplo:

Ângulos cuja soma resulta em 180°
Ângulos cuja soma resulta em 180°

Os ângulos da imagem acima são suplementares porque a soma de suas medidas é igual a 180°.Sabendo que dois ângulos são suplementares, é possível encontrar a medida de um deles a partir da medida do outro. Por exemplo:

Sabendo que o ângulo γ = 128° e o ângulo θ são suplementares, determine a medida de θ.

γ + θ = 180°

128° + θ = 180°

θ = 180° – 128°

θ = 52°

Quando dois ângulos, além de suplementares, são adjacentes, eles:

  • São chamados adjacentes suplementares;

  • Juntos formam um único ângulo de 180°.

Publicado por Luiz Paulo Moreira Silva
Assista às nossas videoaulas

Artigos Relacionados

Medidas de Ângulos
Clique aqui e aprenda a transformar as unidades de medidas de ângulos.
O Teorema de Pitágoras Aplicado no Estudo da Trigonometria
Cálculo da diagonal do quadrado e da altura do triângulo equilátero.
Retas paralelas cortadas por uma transversal
Conheça as retas paralelas cortadas por uma transversal e aprenda a calcular o valor dos ângulos nessa situação. Resolva também os exercícios propostos sobre o tema.
Soma dos Ângulos Internos de um Polígono Regular
Polígonos: ângulos internos, ângulos externos, soma de ângulos.
Ângulo entre dois vetores
Clique para aprender a calcular o ângulo entre dois vetores!
Ângulo formado entre duas retas
Como determinar a medida do ângulo entre duas retas
Ângulos no círculo
Clique aqui e conheça as características e propriedades dos ângulos no círculo!
video icon
"A importância da revisão textual" escrito sobre fundo azul e roxo com uma lupa sobre um texto
Português
A importância da revisão textual
Muita gente acha que a revisão textual é algo que só alguém da área de Letras pode fazer, mas isso é um baita engano! Todo mundo que escreve tem condição de revisar. É o que vamos discutir nesta aula.