Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria
  4. Ângulos complementares e suplementares

Ângulos complementares e suplementares

Ângulos complementares são aqueles cuja soma resulta em 90°. Já os ângulos suplementares são aqueles cuja soma é igual a 180°.

Existem alguns ângulos, chamados de ângulos notáveis, que ocorrem com bastante frequência nos cálculos. O ângulo reto (90°) e ângulo raso (180°) são dois exemplos deles. Quando temos dois ângulos cuja soma é igual a 90°, eles são chamados de complementares; já quando tempos dois ângulos cuja soma é igual a 180º, eles são chamados de suplementares.

Além disso, quando dois ângulos diferentes compartilham uma semirreta, um vértice e não possuem mais pontos em comum, são chamados de adjacentes. Observe o exemplo de ângulos adjacentes, retos e rasos:

Ângulos adjacentes, ângulo reto e ângulo raso, respectivamente
Ângulos adjacentes, ângulo reto e ângulo raso, respectivamente

Ângulos complementares

Se a soma entre os ângulos α e β é igual a 90°, dizemos que α e β são complementares. Por exemplo:

Os ângulos acima são complementares porque, ao somá-los, o resultado obtido é 90°. Sabendo que dois ângulos são complementares, é possível encontrar a medida de um deles a partir da medida do outro. Observe:

Sabendo que os ângulos α = 72° e β são complementares, determine a medida do ângulo β.

α + β = 90° (são complementares)

Não pare agora... Tem mais depois da publicidade ;)

72° + β = 90°

β = 90° – 72°

β = 18°

Essa expressão pode ser tratada como uma equação em que β é a incógnita.

Quando os ângulos complementares também são adjacentes, dizemos que:

  • Eles são complementares adjacentes;

  • Formam um único ângulo de 90° graus.

Ângulos suplementares

Se a soma entre os ângulos γ e θ é igual a 180°, dizemos que γ e θ são suplementares. Por exemplo:

Ângulos cuja soma resulta em 180°
Ângulos cuja soma resulta em 180°

Os ângulos da imagem acima são suplementares porque a soma de suas medidas é igual a 180°.Sabendo que dois ângulos são suplementares, é possível encontrar a medida de um deles a partir da medida do outro. Por exemplo:

Sabendo que o ângulo γ = 128° e o ângulo θ são suplementares, determine a medida de θ.

γ + θ = 180°

128° + θ = 180°

θ = 180° – 128°

θ = 52°

Quando dois ângulos, além de suplementares, são adjacentes, eles:

  • São chamados adjacentes suplementares;

  • Juntos formam um único ângulo de 180°.

Transferidor e alguns exemplos de ângulos
Transferidor e alguns exemplos de ângulos
Publicado por: Luiz Paulo Moreira Silva
Assista às nossas videoaulas
Assuntos relacionados
Ângulos notáveis e alguns instrumentos que os representam
Ângulos
Clique para aprender o que são ângulos, como medi-los e algumas características dos ângulos notáveis.
Retângulo, paralelogramo e trapézio
Quadriláteros
Aprenda o que são quadriláteros e as características e propriedades que os definem como paralelogramos, trapézios ou nenhum dos dois.
A soma dos ângulos internos de um triângulo é fixa
Soma dos ângulos internos de um triângulo
Clique para entender a soma dos ângulos internos de um triângulo e para obter exemplos dessa soma e a demonstração desse resultado.
Ângulos alternos internos ocupam posições alternadas no interior de retas paralelas
Ângulos alternos internos e externos
Clique e descubra o que são ângulos alternos internos e alternos externos, bem como as propriedades que eles possuem.
Ângulos formados por uma reta transversal a duas retas paralelas
Ângulos colaterais internos e externos
Clique para aprender o que são ângulos colaterais internos e externos e também suas propriedades!
Ângulos opostos pelo vértice são congruentes, isto é, possuem medidas iguais
Ângulos opostos pelo vértice
Clique e aprenda o que são ângulos opostos pelo vértice e ângulos adjacentes, bem como as propriedades mais importantes que os envolvem.
O triângulo equilátero possui três lados congruentes
Propriedades do triângulo equilátero
Clique para aprender as propriedades dos triângulos equiláteros e para obter exemplos do uso dessas propriedades em problemas de Geometria.
O hexágono regular é um exemplo de polígono
Polígonos
Aprenda o que são polígonos, descubra algumas das propriedades dessas figuras e entenda a diferença entre polígonos convexos e regulares.
Ângulos externos de um hexágono regular
Soma dos ângulos externos de um polígono
Clique para aprender qual é a soma dos ângulos externos de um polígono convexo e veja como é possível obter esse resultado.
Geometria plana
Entenda os principais conceitos da geometria plana. Conheça as principais figuras geométricas, e aprenda a calcular a área e o perímetro de cada uma delas.
O Teorema de Pitágoras Aplicado no Estudo da Trigonometria
Cálculo da diagonal do quadrado e da altura do triângulo equilátero.
Soma dos Ângulos Internos de um Polígono Regular
Polígonos: ângulos internos, ângulos externos, soma de ângulos.
Medidas de Ângulos
Clique aqui e aprenda a transformar as unidades de medidas de ângulos.
Duas Retas Paralelas Cortadas por uma Transversal
Determinação de ângulos com base na semelhança de triângulos.
Ângulos no círculo
Clique aqui e conheça as características e propriedades dos ângulos no círculo!
Ângulo formado entre duas retas
Como determinar a medida do ângulo entre duas retas
Representação geométrica do ângulo entre dois vetores
Ângulo entre dois vetores
Clique para aprender a calcular o ângulo entre dois vetores!