Whatsapp icon Whatsapp

Equação biquadrada

Toda equação tem uma forma geral que a representa, as equações biquadradas possuem a seguinte forma:

ax4 + bx2 + c = 0

Sendo que a, b e c podem assumir qualquer valor real desde que a seja diferente de zero. Veja alguns exemplos de equações biquadradas.

2x4 + 5x2 – 2 = 0; a = 2, b = 5, c = -2

-x4 – x = 0; a = -1, b = -1, c = 0

x4 = 0; a = 1, b = 0, c = 0

Observando as equações biquadradas percebemos uma de suas características: são equações onde os expoentes das suas incógnitas são sempre pares.

Para resolver esse tipo de equação é preciso substituir as incógnitas, tornando-a uma equação do segundo grau, veja os exemplos abaixo e compreenda como resolver passo a passo uma equação biquadrada.

Exemplo 1:

Resolva a equação biquadrada (x2 – 1) (x2 – 12) + 24 = 0. Devemos organizá-la primeiro, ou seja, tirar os parênteses e unir os termos semelhantes.

(x2 – 1) (x2 – 12) + 24 = 0
x4 – 12x2 – x2 + 12 + 24 = 0
x4 – 13x2 + 36 = 0

Agora devemos substituir a incógnita x2 por y.

x2 = y

x4 – 13x2 + 36 = 0
x2 . x2 – 13x2 + 36 = 0

y2 – 13y + 36 = 0

Resolvendo essa equação do segundo grau encontraremos como resultados de y’ e y’’ respectivamente os valores 9 e 4, como a incógnita da equação biquadrada é x, substituímos os valores de y na igualdade x2 = y e obteremos os respectivos valores de x.

Para y = 9
x2 = y
x2 = 9
x = ±√9
x = ± 3

Para y = 4
x2 = y
x2 = 4
x = ±√4
x = ±2

Portanto, a solução dessa equação biquadrada será {-3, -2, 2, 3}.

Exemplo 2:

Resolva a equação x4 – 5x2 + 10 = 0

Substituindo a incógnita x2 por y.

x2 = y

y2 – 5y + 10 = 0

Resolvendo essa equação do segundo grau o valor do discriminante ∆ será negativo, assim a solução será vazia.
Publicado por Danielle de Miranda
Assista às nossas videoaulas

Artigos Relacionados

 Representação da fórmula de Bhaskara como é ensinada do ensino fundamental
Demonstração da fórmula de Bhaskara
Conheça a demonstração da fórmula de Bhaskara que utiliza outro método para resolver equações do segundo grau.
O discriminante de uma equação do segundo grau tem algumas funções na fórmula de Bháskara
Discriminante de uma equação do segundo grau
Clique e aprenda o que é o discriminante da equação do segundo grau e conheça alguns usos desse elemento da fórmula de Bháskara.
Equação do 2º Grau
Teorema de Bháskara: fórmula resolutiva de uma equação do 2º grau.
As equações do segundo grau podem ser resolvidas por meio da fórmula de Bhaskara
Fórmula de Bhaskara
Clique para aprender a utilizar a fórmula de Bhaskara para encontrar raízes de equações do segundo grau!
Resolver uma equação envolve boas ideias e atitude. Esse é o caso do método de completar quadrados
Método de completar quadrados
Clique para aprender a resolver equações do segundo grau utilizando produtos notáveis em um método chamado: completar quadrados!
Resolução de Equação Produto
Clique aqui e aprenda a desenvolver a resolução da equação produto.
video icon
Matemática
Função logarítmica
Nesta aula vamos explicar a definição de logaritmo e como construir uma função logarítmica. Também resolveremos alguns exercícios sobre o assunto para você ver na prática como aplicá-lo!

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas.