Whatsapp icon Whatsapp

Praticando Progressões

As atividades envolvendo progressões exigem atenção por parte dos estudantes, pois devemos ter conhecimento das fórmulas matemáticas na resolução das progressões. A partir da interpretação do enunciado deveremos escolher qual a fórmula adequada. Fique atento às questões contextualizadas e interdisciplinarizadas, as progressões possuem ligações diretas com outras ciências.

Veja exemplos de atividades envolvendo progressões aritméticas e geométricas e as formas de resolução comentadas.


Exemplo 1
Determine o 32º termo da sequência (2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38,...).
Resolução
Verificamos que a sequência dada é uma Progressão Aritmética de razão igual a 3, pois:
r = 5 – 2 = 3
r = 8 – 5 = 3, e assim sucessivamente.
A expressão utilizada na determinação de um dos termos da PA é a seguinte:
an = a1 + (n – 1)*r
a32 = ?
a1 = 2
r = 3
n = 32

a32 = 2 + (32 – 1) * 3
a32 = 2 + 31 * 3
a32 = 2 + 93
a32 = 95

Portanto, o 32º termo da sequência será o número 95.


Exemplo 2
Qual a soma dos números pares compreendidos entre 1 e 201?
Resolução
Precisamos determinar o primeiro e o último número par do intervalo, dessa forma temos:
a1 = 2
an = 200
r = 2

Vamos determinar  o número de termos:

Não pare agora... Tem mais depois da publicidade ;)

Soma dos termos:

A soma dos números pares compreendidos entre 1 e 201 é igual a 10 100.

Exemplo 3
Determine o 8º termo da seguinte Progressão Geométrica (3, 9, 27, 81,....)
A fórmula que determina o termo de uma PG é dada pela seguinte expressão matemática: an = a1*qn–1.
Resolução
a8 = ?
a1 = 3
q = 3
n = 8

a8 = 3 * 38 – 1
a8 = 3 * 37
a8 = 3 * 2187
a8 = 6561

O 8º termo da PG é igual a 8.


Exemplo 4
Determine a soma dos 9 primeiros termos da sequência (1,2,4,8,...).
Resolução

A soma de uma PG finita pode ser expressa pela seguinte fórmula matemática:


a1 = 1
q = 2
n = 9


Exemplo 5
Dada a PA (12, 8, 4, 0, -4,...), determine o 20º termo.
Resolução
Temos que a PA dada é uma progressão decrescente, veja:
r = 8 – 12 = – 4
r = 4 – 8 = – 4


an = a1 + (n – 1)*r
a20 = 12 + (20 – 1) * (– 4)
a20 = 12 + 19 * (– 4)
a20 = 12 – 76
a20 = – 64

O 20º termo da PA é o número – 64.

Publicado por Marcos Noé Pedro da Silva
Assista às nossas videoaulas

Artigos Relacionados

Classificação da Progressão Aritmética
Vamos verificar como uma sequência numérica e progressões podem ser determinadas? Clique aqui!
Progressão aritmética
Conheça as propriedades da progressão aritmética e aprenda a classificá-la. Entenda o cálculo do termo geral de uma P.A. e a soma geral de uma progressão aritmética.
Representação genérica de uma P.A
Uma forma de facilitar a resolução de problemas envolvendo progressão aritmética
video icon
Frase "Redação nota 1000 | Desvalorização da ciência e fuga de cérebros no Brasil" escrita ao lado da silhueta de uma mulher de cabelos soltos
Português
Redação nota 1000 | Desvalorização da ciência e fuga de cérebros no Brasil
Quando a ciência não é valorizada em um país, pesquisadores tendem a buscar subsídios além das fronteiras. Nesta videoaula, discutiremos essa importante temática no cenário brasileiro e suas consequências para a sociedade. Fiquem ligados!

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
videoaula brasil escola
Biologia
Transgênicos
Você sabe o que são alimentos transgênicos? Não se engane, eles estão mais presentes do que você imagina!
video icon
Videoaula Brasil Escola
Química
Alotropia
Não deixe de assistir nossa aula para fixar tudo o que você estudou sobre alotropia!
video icon
Videoaula Brasil Escola
Filosofia
Batman
Que tal assistir ao vídeo para uma análise ética sobre o herói?