Whatsapp icon Whatsapp

Propriedades da multiplicação e da adição para o cálculo mental

As propriedades da multiplicação e da adição contribuem para que alunos desenvolvam suas habilidades com cálculo mental.
Algumas propriedades contribuem para o cálculo mental em adição e multiplicação
Algumas propriedades contribuem para o cálculo mental em adição e multiplicação

Adição e multiplicação são operações matemáticas que apresentam algumas propriedades pouco exploradas no Ensino Fundamental e Médio. Elas podem contribuir de maneira significativa para o cálculo mental e agilizar as resoluções de diversos exercícios. A seguir mostraremos algumas dessas propriedades e daremos dicas de como utilizá-las.

  • Associatividade

Sejam a, b e c números reais quaisquer, a propriedade associativa da adição é a seguinte:

(a + b) + c = a + (b + c)

A propriedade associativa da multiplicação é a seguinte:

(a·b)·c = a·(b·c)

Em outras palavras, em uma “cadeia de adições”, tanto faz o número que será somado primeiro. O resultado final será igual. Observe o exemplo abaixo:

24 + 13 + 7

Utilizando a propriedade acima, teremos o seguinte:

(24 + 13) + 7 = 24 + (13 + 7) = 24 + 20 = 44

  • Comutatividade

Sejam a e b números reais quaisquer, a propriedade comutativa da adição é a seguinte:

a + b = b + a

E a propriedade comutativa da multiplicação é a seguinte:

a·b = b·a

Em outras palavras, essa propriedade garante que o resultado de uma multiplicação ou de uma soma será o mesmo independentemente da ordem dos fatores. Por exemplo:

32·60 = 60·32 = 1920

  • Comutatividade + associatividade = cálculo mental

Se as duas propriedades acima forem combinadas, especialmente para a adição, é possível calcular algumas expressões numéricas de maneira muito mais fácil. Observe o exemplo:

22 – 5 + 7 + 18 – 5 + 24 + 13

Pela comutatividade, podemos reescrever a expressão acima da seguinte maneira:

22+ 18 + 13 + 7 + 24 – 5 – 5

Já pela associatividade, podemos escolher a ordem de adição que torna os cálculos acima mais fáceis. Veja um exemplo:

(22+ 18) + (13 + 7) + (24 – 5 – 5)

40 + 20 + (24 – 5 – 5)

Observe que podemos usar a propriedade associativa mais uma vez nos números que já estão dentro dos parênteses. Somaremos os números negativos primeiro, depois diminuiremos o resultado de 24:

40 + 20 + (24 – 5 – 5)

40 + 20 + (24 – 10)

40 + 20 + 14

60 + 14

74

  • Multiplicação por potências ou múltiplos de 10

As potências de 10 são 10, 100, 1000, … que podem ser escritos na forma: 101, 102, 103, …

Não pare agora... Tem mais depois da publicidade ;)

Não é necessário realizar todo o processo do algoritmo da multiplicação quando ela envolver um desses números. Para realizar essa multiplicação, coloque no final do outro fator a quantidade de zeros (ou o expoente da potência de 10) que o multiplica. Por exemplo:

125·10000 = 1250000

Basta adicionar quatro zeros após o 125. Esse será o resultado da multiplicação acima.

Quando a multiplicação envolve múltiplos de 10, o procedimento é parecido, mas depende de um passo inicial.

Conte quantos zeros os múltiplos de 10 possuem e multiplique apenas sua parte inicial, que possui outros algarismos. Os zeros que foram contados devem ser colocados ao final desse resultado parcial, como no exemplo seguinte:

432 000 ·50500 

Observe que, para esse cálculo, só devem ser “separados” os zeros que aparecem após o último algarismo não nulo do número. Nesse exemplo, eles estão destacados em vermelho.

Faça a multiplicação a seguir e coloque 5 zeros no final do resultado parcial.

432·505 = 21816000000

Esse será o resultado da multiplicação solicitada no início.

  • Propriedade distributiva

Dados os números reais a, b e c, a propriedade distributiva da multiplicação sobre a adição diz o seguinte:

a(b+ c) = a·b + a·c

Essa propriedade pode ser usada da seguinte maneira:

Caso seja necessário realizar uma multiplicação de dois fatores, é possível decompor um dos fatores em uma soma, multiplicar separadamente e somar os resultados depois. Observe o exemplo abaixo:

432·50 =

(400 + 30 + 2)·50 =

400·50 + 30·50 + 2·50 =

Utilizando a multiplicação por múltiplos de 10, podemos afirmar que 400·50 = 4·5(000) = 20000. Esses cálculos podem ser feitos mentalmente com tranquilidade. Basta multiplicar 4 por 5 e adicionar 3 zeros ao resultado. Desse modo, 30·50 = 1500 e 2·50 = 100. Logo:

400·50 + 30·50 + 2·50 =

20000 + 1500 + 100 =

21600

Essa última adição também pode ser feita mentalmente com tranquilidade.

As outras duas propriedades da multiplicação e da adição estão ligadas à existência de elemento neutro e à existência de elemento inverso, entretanto, elas não contribuem de maneira significativa ao cálculo mental. Mais informações sobre elas podem ser encontradas no texto “Propriedades da multiplicação dos números inteiros”.

Publicado por Luiz Paulo Moreira Silva
Assista às nossas videoaulas

Artigos Relacionados

Adição
Conheça a operação matemática chamada adição. Aprenda a calcular a soma entre os números. Utilize o algoritmo de adição para encontrar a soma entre os números.
Divisão por divisores maiores que 10
Clique para aprender o método utilizado para realizar a divisão de números por divisores maiores que 10.
Fórmulas de Matemática decisivas para o Enem
Clique para conferir algumas das fórmulas mais recorrentes no Enem e que são decisivas para a sua aprovação!
Macetes de Matemática para o Enem
Conheça alguns macetes de Matemática que podem ajudar muito na resolução das questões do Enem!
Multiplicação
Aprenda a realizar a multiplicação entre dois números utilizando o algoritmo dessa operação, bem como entenda o jogo de sinais.
Propriedades da multiplicação dos números inteiros
Acesse para conhecer quais são as propriedades da multiplicação dos números inteiros!
Reta numérica dos números inteiros
Aprenda por meio de exemplos como utilizar a reta numérica dos números inteiros. Acesse!
Três conteúdos básicos de Matemática para o Enem
Clique para fazer uma revisão de três conteúdos básicos de Matemática para o Enem!
Utilizando a Propriedade Distributiva na Resolução de Equações
Utilizando a Propriedade Distributiva na Resolução de Equações
video icon
Escrito"Matemática do Zero | Área de triângulo " em fundo azul.
Matemática do Zero
Matemática do Zero | Área de triângulo
Nessa aula veremos como calcular a área de um triângulo possuindo base e altura, ou possuindo dois lados e o ângulos entre os lados, ou possuindo apenas as medidas dos lados (Fórmula de Heron).

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.