Whatsapp icon Whatsapp

Multiplicação

A multiplicação é uma dentre as quatro operações básicas da Matemática. Conhecemos como multiplicação a soma sucessiva de um número por ele mesmo. Para fazer a representação da multiplicação entre dois números, utilizamos o símbolo “×” ou o símbolo “·”. O resultado da multiplicação é conhecido como produto, e os números que serão multiplicados são chamados de fatores.

Para encontrar o resultado da multiplicação, é necessário conhecer a tabuada e aprender a aplicar o algoritmo dessa operação quando necessário. Existem propriedades importantes na multiplicação, a saber:

  • propriedade comutativa;

  • propriedade distributiva;

  • propriedade associativa;

  • existência de um elemento neutro; e

  • existência do inverso de um número.

Leia também: O que são múltiplos e divisores?

Representação da multiplicação

A multiplicação é uma operação básica da Matemática.[1]
A multiplicação é uma operação básica da Matemática.[1]

A multiplicação é uma operação que utilizamos para facilitar o calculo da adição sucessiva de um número por ele mesmo. Por exemplo:

5 + 5 + 5 + 5 + 5 + 5 + 5 = 35

A adição sucessiva de 5 por ele mesmo 7 vezes pode ser representada de forma mais simples, a saber:

5 × 7 = 35

Chamamos o símbolo × de vezes, ou seja, estamos calculando 5 vezes 7. A multiplicação serve para facilitar a notação de adições sucessivas de um número por ele mesmo.

Não pare agora... Tem mais depois da publicidade ;)

Termos da multiplicação

Em uma multiplicação, cada termo recebe um nome.

  • Fatores: os números que estamos multiplicando.

  • Produto: o resultado da multiplicação.

Exemplo:

3 × 7 = 21

3 e 7 → fatores
21 → produto

Para encontrar o produto entre dois números menores ou iguais a 10, utilizamos a tabuada:

Tabuada da multiplicação
Tabuada da multiplicação

Quando queremos calcular a multiplicação entre dois números e pelo menos um deles não está na tabuada, ou seja, é maior do que 10, utilizamos o algoritmo da multiplicação, que será apresentado a seguir.

Veja também: Como calcular a multiplicação de números decimais?

Como fazer a multiplicação?

Quando o produto da multiplicação não está na tabuada, é necessário utilizar o algoritmo da multiplicação. Vamos compreender seu funcionamento por meio dos exemplos a seguir.

Exemplo 1:

Começando com um exemplo mais simples, vamos calcular 21 × 3.

Primeiramente montamos o algoritmo, colocando o número com maior quantidade de dígitos primeiro, conforme a demonstração a seguir:

Agora realizamos a multiplicação entre as unidades, ou seja, 3 x 1 = 3. O resultado será colocado abaixo do 3.

Agora vamos multiplicar a dezena do primeiro fator com a unidade do segundo fator, ou seja, 2 × 3 = 6, e o resultado será colocado na frente do primeiro resultado.

Então, o produto de 21 × 3 = 63.

Exemplo 2:

Agora faremos um caso um pouco mais complexo, quando a multiplicação entre as unidades resulta em um número maior que 9. Vamos calcular 43 × 6.

Montando o algoritmo:

Realizando a multiplicação entre as unidades, sabemos que 6 × 3 = 18. Nesse caso, vamos colocar o 8 no produto e o 1 acima da casa das dezenas para somar com o próximo resultado.

Agora realizaremos a segunda multiplicação, somando 1 ao seu resultado, ou seja, 6 × 4 + 1 = 24 + 1 = 25. Como não há mais nem um número no primeiro fator, vamos escrever 25 no produto.

Então, 43 × 6 = 258.

Exemplo 3:

Agora faremos um exemplo em que os dois fatores são maiores que 9:

35 × 24

Para realizar essa multiplicação, vamos montar o algoritmo:

Agora multiplicaremos as unidades 4 x 5.

Faremos também a multiplicação de 4 x 3 e somaremos 2:

Agora vamos multiplicar a dezena do fator que está embaixo com a unidade do fator que está em cima. Como ele é uma dezena, 2 x 5 = 10.

Como 2 é uma dezena, pulamos a casa das unidades ao escrever o 0. Agora multiplicaremos as dezenas dos dois fatores e somaremos 1, ou seja, 2 x 3 + 1 = 7.

Agora vamos somar os resultados encontrados:

Leia também: 3 erros comuns ao resolver expressões numéricas

Propriedades da multiplicação

A multiplicação possui propriedades importantes, a saber: propriedade comutativa, distributiva, associativa, existência de um elemento neutro e existência do inverso de um número.

  • Propriedade comutativa

Em uma multiplicação, a ordem dos fatores não altera o produto.

a × b = b × a

Exemplo:

5 × 3 = 3 × 5 = 15

  • Propriedade distributiva

Conhecida informalmente como chuveirinho, essa propriedade envolve a adição e a multiplicação:

a ( b + c ) = ab + ac

Exemplo:

Vamos resolver a expressão:

4 ( 5 + 6)

Pela propriedade distributiva, existem dois caminhos possíveis para resolver essa expressão numérica. Por um caminho, podemos somar e depois realizar a multiplicação.

4 (5 + 6)
4 (11)
44

Pelo outro, podemos realizar a multiplicação de 4 por cada um dos termos, ou seja:

4 (5 + 6)
4 × 5 + 4 × 6
20 + 24

44

  • Propriedade associativa

A associação entre os termos vai gerar o mesmo produto:

(a × b) × c = a × (b × c)

Exemplo:

(2 × 3) × 4 = 2 × (3 × 4)
6 × 4 = 2 × 12
24 = 24

Note que a ordem em que multiplicamos não altera o resultado.

  • Existência de elemento neutro

Na multiplicação, o 1 é o elemento neutro. Isso significa que, ao realizar a multiplicação de um número por 1, o resultado será o próprio número:

a×1 = a

Exemplo:

5 × 1 = 5

  • Existência de um inverso

Dado um número a, diferente de zero, existe um número em que, ao multiplicá-lo por a, o produto será o elemento neutro.

Jogo de sinal

Quando realizamos a multiplicação entre números inteiros, é interessante conhecer o jogo de sinal, para saber qual será o sinal do produto. Quando multiplicamos dois números com sinais iguais, a resposta é sempre positiva; quando os números possuem sinais opostos, o produto é sempre negativo. Para facilitar, veja a tabela com o jogo de sinal:

Sinal do primeiro fator

 

Sinal do segundo fator

 

Sinal do produto

+

×

+

=

+

×

=

+

+

×

=

×

+

=

Exemplo:

a) – 4 × 5 = – 20

b) 4 × (– 5) = – 20

c) 4 × 5 = 20

d) – 4 × (– 5) = 20

Exercícios resolvidos

Questão 1 – Em uma sala de espera, há 4 fileiras com 5 cadeiras cada e 6 fileiras com 4 cadeiras cada. Sendo assim, o número total de cadeiras que há nessa sala de espera é:

A) 20.
B) 24.
C) 30.
D) 34.
E) 44.

Resolução

Alternativa E.

Para encontrar o número de cadeiras, vamos multiplicar a quantidade de cadeiras e a quantidade de fileiras, então:

4 × 5 + 6 × 4
20 + 24
44

Questão 2 — A imprudência no trânsito acontece devido a vários fatores, e um deles é o uso excessivo de celular. Pesquisas recentes apontam que os fatores humanos que causam acidentes são o excesso de velocidade, a embriaguez ao volante e o uso do celular ao volante. Na região metropolitana de Goiânia, capital de Goiás, o governo registrou que aconteciam, em média, 43 acidentes de trânsito por dia. Supondo que essa estatística se mantenha durante o ano posterior à pesquisa, então o número de acidentes registrado no mês de fevereiro, sabendo que esse ano não é bissexto, é igual a:

A) 1118.
B) 1204.
C) 1247.
D) 1290.
E) 1333.

Resolução

Alternativa B.

Sabemos que o mês de fevereiro, em um ano não bissexto, possui 28 dias. Se, para cada dia, são 43 acidentes de trânsito, então vamos calcular o produto da multiplicação 28 × 43:

Crédito da imagem

[1] Patrick Herzberg / Shutterstock

Publicado por Raul Rodrigues de Oliveira
Assista às nossas videoaulas

Artigos Relacionados

Veja quais são os erros para não mais cometê-los
3 erros mais cometidos ao calcular produtos notáveis
Clique e veja quais são os três erros mais cometidos ao calcular produtos notáveis. Veja meios para evitar esses erros e obtenha exemplos de cálculos comentados envolvendo esse conteúdo. Além disso, reveja os principais casos de produtos notáveis e algumas das fórmulas usadas para eles.
Sinal que simboliza a soma.
Adição
Conheça a operação matemática chamada adição. Aprenda a calcular a soma entre os números. Utilize o algoritmo de adição para encontrar a soma entre os números.
Divisão e redistribuição de quantidades
Algoritmo da divisão
Aprenda a utilizar o algoritmo da divisão, mais conhecido no Brasil como método da chave.
Ábaco: objeto usado para somar e subtrair na Antiguidade
Algoritmo da subtração
Clique para aprender o algoritmo da subtração e não erre mais ao realizar o cálculo dessa operação matemática básica.
Pi: número irracional que geralmente é arredondado para 3,14
Arredondamento
Aprenda o modo correto de praticar o arredondamento de números decimais no método proposto pelo IBGE.
Divisão
Descubra o passo a passo de como realizar uma divisão sem erros e veja também como realizar divisão com números decimais.
A divisão de números inteiros tem como resultado outro número inteiro ou um número decimal
Divisão com resultado decimal
Aprenda a lidar com divisões que apresentarem resultado decimal!
A divisão é a operação matemática básica mais desafiadora
Divisão por divisores maiores que 10
Clique para aprender o método utilizado para realizar a divisão de números por divisores maiores que 10.
Expressões numéricas
Aprenda a resolver expressões numéricas clicando aqui! Saiba qual a maneira correta para se resolver uma expressão respeitando a ordem das operações e dos símbolos.
Saber realizar o jogo de sinais é fundamental para não errar na hora de fazer cálculos
Jogo de sinais
Clique para aprender a usar o jogo de sinais corretamente e nunca mais errar na hora de determinar o sinal do resultado de uma operação!
Dicas e macetes de estudo para se sair bem no Enem
Macetes de Matemática para o Enem
Conheça alguns macetes de Matemática que podem ajudar muito na resolução das questões do Enem!
Multiplicação de números decimais
Veja aqui como multiplicar dois números decimais. Saiba realizar essa operação utilizando diferentes métodos.
A multiplicação reduz os cálculos da adição
Multiplicação de números naturais
Fique por dentro de como é realizada a multiplicação de números naturais.
Multiplicação e Divisão de Frações
Clique aqui e aprenda a realizar a multiplicação e a divisão de frações!
Mínimo Múltiplo Comum
Múltiplo, Divisores, Multiplicação, Mínimo múltiplo comum, Número natural, regra pra descobrir os múltiplos, Divisão, Divisão exata, Divisão não exata, Múltiplos comuns.
As propriedades da multiplicação dos números inteiros são: comutativa, associativa, elemento neutro e distributiva
Propriedades da multiplicação dos números inteiros
Acesse para conhecer quais são as propriedades da multiplicação dos números inteiros!
Algumas propriedades contribuem para o cálculo mental em adição e multiplicação
Propriedades da multiplicação e da adição para o cálculo mental
Clique para conhecer as propriedades da multiplicação e da adição e a maneira como elas contribuem para o cálculo mental dessas operações!
Aprenda a encontrar o MMC e o MDC com a fatoração!
Regra prática para calcular MMC e MDC
Que tal calcular o MMC e MDC com uma única fatoração? Confira dicas e exemplos para facilitar seus cálculos!
Símbolo relacionado à divisão
Resto da divisão
Saiba o que é o resto da divisão e quais são suas propriedades e características mais importantes e aprenda um modo prático de encontrá-lo.
Subtração
Conheça a operação matemática chamada subtração. Aprenda a calcular a diferença entre dois números. Entenda o algoritmo da subtração.
video icon
Português
Niketche – uma história de poligamia
Assista a nossa videoaula para conhecer um pouco mais sobre a obra Niketche – uma história de poligamia, da escritora moçambicana Paulina Chiziane. Confira nossa análise!

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Videoaula Brasil Escola
Inglês
Genitive Case
É hora de aperfeiçoar sua gramática na Língua Inglesa. Assista!
video icon
Videoaula Brasil Escola
Sociologia
Democracia racial
Você sabe o que significa democracia racial? Clique e nós te ensinamos!
video icon
Tigres Asiáticos
Geografia
Tigres Asiáticos
Assista à nossa videoaula sobre os Tigres Asiáticos, e conheça as razões do desenvolvimento rápido desses territórios.