Whatsapp icon Whatsapp

Raiz quadrada aproximada

A raiz quadrada aproximada é a forma utilizada para fazer o cálculo de uma raiz quadrada que não é exata.
Representação da raiz quadrada do número 2.
Quando a raiz quadrada não é exata, podemos calcular uma aproximação. A raiz quadrada do número 2 é um exemplo de raiz não exata.

A raiz quadrada aproximada é utilizada quando precisamos calcular a raiz quadrada de um número que não possui raiz exata. Quando isso ocorre, é necessário utilizar uma aproximação, porque a raiz quadrada nesse caso forma uma dízima não periódica. Para descobrir uma aproximação da raiz quadrada, primeiramente encontramos entre quais números naturais a raiz quadrada se situa. Posteriormente, podemos analisar o valor da casa decimal, encontrando o valor que mais se aproxima da raiz quadrada desejada.

Leia também: Raiz cúbica — o caso de radiciação em que o 3 é o índice do radical

Videoaula sobre raiz quadrada aproximada

Raiz quadrada aproximada x Raiz quadrada exata

Existem dois casos possíveis para a raiz quadrada de um número natural: o resultado pode ser uma raiz quadrada exata ou não. Os números que possuem raiz quadrada exata são conhecidos como quadrados perfeitos. Veja alguns deles a seguir:

  • \( \sqrt0=0\)

  • \( \sqrt1=1\)

  • \( \sqrt4=2\)

  • \( \sqrt9=3\)

  • \( \sqrt{16}=4\)

  • \( \sqrt{25}=5\)

  • \( \sqrt{36}=6\)

  • \( \sqrt{49}=7\)

  • \( \sqrt{64}=8\)

  • \( \sqrt{81}=9\)

  • \( \sqrt{100}=10\)

  • \( \sqrt{121}=11\)

  • \( \sqrt{144}=12\)

  • \( \sqrt{169}=13\)

  • \( \sqrt{196}=14\)

  • \(\sqrt{225}=15\)

Quando o número natural não é um quadrado perfeito, a raiz quadrada desse número é uma dízima não periódica, como a raiz de 3 a seguir:

\(\sqrt3=1.73205080756887729362772\ldots\)

Quando a raiz quadrada não é um número exato, é possível encontrar uma aproximação para o valor da raiz.

Não pare agora... Tem mais depois da publicidade ;)

Como calcular a raiz quadrada aproximada?

Quando a raiz quadrada não é exata, podemos calcular a raiz quadrada aproximada. Para isso, é necessário, inicialmente, encontrar entre quais quadrados perfeitos esse número se situa. Posteriormente, encontramos o intervalo em que a raiz quadrada desse número está. Por fim, determinamos a casa decimal por tentativa.

  • Exemplo 1:

Calcularemos o valor da \(\sqrt{20}\), por aproximação.

Resolução:

De início, encontraremos entre quais quadrados perfeitos o número 20 está:

16 < 20 < 25

Posteriormente, encontraremos entre quais valores está a raiz quadrada de 20:

\(\sqrt{16}<\sqrt{20}<\sqrt{25}\)

\(4<\sqrt{20}<5\)

Sabemos que \(\sqrt{20} \) está entre 4 e 5, logo a parte inteira é 4, que é o menor dentre os valores.

Encontraremos a primeira casa decimal calculando o quadrado dos valores que estão entre 4,1 e 4,9 e descobrindo entre quais desses números a \(\sqrt{20}\) está. Para isso, calcularemos o quadrado de cada um deles até encontrar um número maior que 20:

4,1² = 16,81
4,2² = 17,64
4,3² = 18,49
4,4² = 19,36
4,5² = 20,25

Note que \(\sqrt{20}\) está entre 4,4 e 4,5.

Caso o objetivo seja encontrar uma aproximação com uma casa decimal, dizemos que:

\(\sqrt{20}=4,4\) por falta

\(\sqrt{20}=4,5 \) por excesso.

Podemos também encontrar a próxima casa decimal, agora que encontramos um novo intervalo para \(\sqrt{20}\):

\(4,4<\sqrt{20}<4,5\)

Testando os valores com duas casas decimais, temos que:

4,41² = 19,4481
4,42² = 19,5364
4,43² = 19,6249
4,44² = 19,7136
4,45² = 19,8025
4,46² = 19,8916
4,47² = 19,9809
4,48² = 20,0704

Agora, reduzimos mais ainda o intervalo, pois sabemos que a \(\sqrt{20}\) está entre 4,47 e 4,48.

\(\sqrt{20}\) = 4,47 por falta.

\(\sqrt{20}\) = 4,48 por excesso.

Podemos repetir esse procedimento para quantas casas decimais quisermos.

  • Exemplo 2:

Calcule \(\sqrt2\).

Resolução:

1 < 2 < 4

Temos que:

\(\sqrt1<\sqrt2<\sqrt4\)

\(1<\sqrt2<2\)

Sabemos que \(\sqrt2\) é um número entre 1,1 e 1,9:

1,1² = 1,21
1,2² = 1,44
1,3² = 1,69
1,4² = 1,96
1,5² = 2,25

Portanto, \(\sqrt2\) está entre 1,4 e 1,5.

\(\sqrt2\) = 1,4 por falta.

\(\sqrt2\) = 1,5 por excesso.

Calculando a segunda casa decimal:

1,41² = 1,9881
1,42² = 2,0164

\(\sqrt2\) = 1,41 por falta.

\(\sqrt2\) = 1,42 por excesso.

Saiba também: O que é uma função raiz?

Exercícios resolvidos sobre raiz quadrada aproximada

Questão 1

Calculando o valor aproximado de \(\sqrt{60}\) com duas casas decimais por falta, encontramos:

A) 7,71

B) 7,72

C) 7,73

D) 7,74

E) 7,75

Resolução:

Alternativa D

O número 60 está entre os quadrados perfeitos 49 e 64:

\(49<60<64\)

\(\sqrt{49}<\sqrt{60}<\sqrt{64}\)

\(7<\sqrt{60}<8\)

Testando os números entre 7,1 e 7,9:

7,1² = 50,41
7,2² = 51,84
7,3² = 53,29
7,4² = 54,76
7,5² = 56,25
7,6² = 57,76
7,7² = 59,29
7,8² = 60,84

Então, temos que \(7,7<\sqrt{60}<7,8:\):

7,71² = 59,4441
7,72² = 59,5984
7,73² = 59,7529
7,74² = 59,9076
7,75² = 60,0625

A aproximação por falta é, portanto, 7,74.

Questão 2

O número 3,87 é a aproximação por falta de:

A) \(\sqrt{14}\)

B) \(\sqrt{15}\)

C) \(\sqrt{15}\)

D) \(\sqrt{17}\)

Resolução:

Alternativa B

Calculando o quadrado de 3,87:

3,87² = 14,9769

O número decimal 3,87 é a melhor aproximação por falta para \(\sqrt{15}\).

Publicado por Raul Rodrigues de Oliveira
Assista às nossas videoaulas

Artigos Relacionados

Como surgiram os números
Os números já estavam presentes na pré-história? Como foram criados? Saiba aqui!
video icon
Escrito"Matemática do Zero | Média Aritmética" em fundo azul.
Matemática do Zero
Matemática do Zero | Média Aritmética
Nessa aula veremos como calcular a média aritmética simples e a média aritmética ponderada de uma amostra.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.