Whatsapp icon Whatsapp

Raiz quadrada

A raiz quadrada é um caso particular e comum de radiciação. Calcular a raiz quadrada de um número x é procurar qual número elevado a dois resulta em x.
A raiz quadrada é uma operação básica da Matemática.
A raiz quadrada é uma operação básica da Matemática.

A raiz quadrada é uma operação básica e importante da Matemática. Se trata da operação inversa da potenciação. Assim, calcular a raiz quadrada de um número n é descobrir qual número elevado ao quadrado resulta em n. Por exemplo, a raiz quadrada de 9 é igual a 3, pois, 3² é 9. Uma raiz quadrada pode ser exata, gerando um número chamado de quadrado perfeito, ou pode ser não exata.

Leia também: Expressões numéricas — o conjunto de operações fundamentais a serem calculadas

Resumo sobre raiz quadrada

  • A raiz quadrada é uma radiciação que possui o índice igual a 2.

  • Ela é a operação inversa de uma potência de expoente 2.

  • Seus elementos fundamentais são: índice, radical, radicando e raiz.

  • A raiz quadrada de um número a é representada por √a.

  • Pode ser exata ou não exata.

Videoaula sobre raiz quadrada

Não pare agora... Tem mais depois da publicidade ;)

Radiciação e a relação com a raiz quadrada

A radiciação é uma das operações básicas da Matemática, sendo a operação inversa da potência. Existem vários tipos de raiz, como a raiz cúbica e a raiz quarta, mas a mais utilizada é a raiz quadrada.

Quando calculamos, por exemplo, a raiz quadrada de um número a, o resultado dessa operação será o número que, ao elevarmos ao quadrado, resultará em a. Os outros casos de radiciação seguem o mesmo raciocínio. A raiz cúbica de um número x é o número cujo cubo é igual a x. Dizemos, por exemplo, que a raiz cúbica de 27 é 3, pois 3³ = 27. De forma semelhante, dizemos que a raiz quadrada de 81 é 9, pois 9² = 81.

  • Representação da raiz de um número

Representação da raiz de um número.

O que é raiz quadrada?

A raiz quadrada é um caso particular da radiciação, sendo o mais comum deles. Conhecemos como raiz quadrada a radiciação com índice igual a 2. A raiz quadrada é a operação inversa da potência com o expoente 2, pois quando calculamos a raiz quadrada de um número a, estamos procurando qual número ao quadrado é igual a a. Quando o radical não apresenta número no índice, calcula-se a raiz quadrada do radicando.

Exemplos:

√4 = 2, pois 2² = 4

√9 = 3, pois 3² = 9

√16 = 4, pois 4² = 16

√25 = 5, pois 5² = 25

Como calcular a raiz quadrada?

Para calcular a raiz quadrada de um número, geralmente recorremos à tabuada. Entretanto, quando o número é maior que 100, é possível utilizar o processo de fatoração para calcular a raiz quadrada exata.

Ao realizar uma fatoração, agrupamos os fatores de dois em dois, já que é a raiz quadrada exata que estamos buscando. Já quando estamos calculando uma raiz quadrada não exata, utilizamos aproximações.

Saiba também: Propriedades dos radicais — simplificam e resolvem raízes de qualquer índice

  • Raiz quadrada exata

A raiz quadrada exata ocorre quando o resultado da operação é um número racional. Os exemplos supracitados são casos de raiz quadrada exata. Por exemplo, a √16 é exata porque o seu resultado é 4, que é um número racional. Quando há no radicando um número com raiz quadrada desconhecida, utilizamos fatoração para calcular uma raiz exata.

Exemplo:

Calcule o valor da √324.

Resolução:

Para encontrar a √324, inicialmente fatoraremos esse número:

Fatoração do número 324.

Dessa forma, calcula-se:

Aplicação da raiz quadrada sobre o resultado da fatoração do número 324.

  • Raízes exatas de 0 até 100

√0 = 0

√1 = 1

√4 = 2

√9 = 3

√16 = 4

√25 = 5

√36 = 6

√49 = 7

√64 = 8

√81 = 9

√100 = 10

Os números que possuem raiz quadrada exata são conhecidos como quadrados perfeitos.

  • Raiz quadrada não exata

Em muitos casos, o número pode não possuir uma raiz quadrada exata, ou seja, a solução da raiz quadrada é um número irracional. Para calcular uma raiz quadrada não exata, utilizamos aproximações, ou seja, números que quando elevamos ao quadrado chegam bem próximo do resultado desejado.

Exemplo:

Calcule o valor da √60.

Resolução:

Sabemos que essa raiz não é exata, então, primeiramente, identificaremos qual é o número anterior a 60 que possui raiz exata, que é 49, e também o número posterior a 60 que possui raiz exata, que é 64.

√49 < √60 < √64

Calculando as raízes de 49 e 64:

7 < √60 < 8

Note que 60 está próximo de 64, então a √60 estará próxima de 8. Calcularemos, assim, o quadrado dos números próximos a 8.

7,9² = 62,41

7,8² = 60,84

7,7² = 59,29

Descobrimos que a √60 está entre 7,7 e 7,8.

Portanto, dizemos que a √60 = 7,7 por falta ou que a √60 = 7,8 por excesso.

Exercícios resolvidos sobre raiz quadrada

Questão 1

(Ethos concursos) A raiz quadrada de um número é uma importante operação matemática, assim como a adição, a subtração, a multiplicação e a divisão. Somente alguns números possuem raiz quadrada, aqueles considerados quadrados perfeitos. Sendo assim, calcule a raiz quadrada de 625 e assinale a alternativa CORRETA.

A) 35

B) 24

C) 25

D) 17

E) 49

Resolução:

Alternativa C

Inicialmente, realizaremos a fatoração do número:

Fatoração do número 625.

Dessa forma, temos:

√625 = √54

√625 = 5²

√625 = 25

Questão 2

Sobre a raiz quadrada, julgue as afirmativas a seguir:

I → É possível calcular a raiz quadrada de número negativo.

II → Os números 0, 1, 4, 9 e 16 são todos quadrados perfeitos menores que 20.

III → A raiz quadrada de 6 é igual a 3.

As afirmativas são, respectivamente:

A) V, V e V.

B) F, F e F.

C) F, F e V.

D) F, V e F.

E) V, F e V.

Resolução:

Alternativa D

I → Falsa

A potência de dois possui resultado somente positivo, logo, não é possível calcular a raiz quadrada de um número negativo.

II → Verdadeira

Os números listados são os únicos que possuem raiz exata menores que 30.

III → Falsa

3² = 9, logo, a raiz quadrada de 9 é 3, e não a de 6.

Publicado por Raul Rodrigues de Oliveira
Assista às nossas videoaulas

Artigos Relacionados

Como surgiram os números
Os números já estavam presentes na pré-história? Como foram criados? Saiba aqui!
Critérios de divisibilidade
Aprenda os principais critérios de divisibilidade e facilite as resoluções dos problemas que envolvem a operação de divisão.
Fatoração Numérica
Clique aqui e aprenda uma forma prática para fatoração numérica.
Potenciação de Números Racionais
Propriedades da Potenciação.
Propriedades dos radicais
Clique para aprender as sete propriedades dos radicais: sete possibilidades de cálculo envolvendo raízes!
Radiciação
Conheça a radiciação, aprenda a calcular a raiz de um número, entenda as propriedades da radiciação. Resolva os exercícios propostos sobre o tema.
Raiz quadrada aproximada
Clique aqui e aprenda como calcular a raiz quadrada aproximada de um número que não possui raiz quadrada exata.
Simplificação de radicais
Clique para aprender como a simplificação de radicais deve ser feita para que o cálculo de raízes seja facilitado.
video icon
Escrito"Cigarro eletrônico faz mal mesmo?" sobre a fumaça presente em uma ilustração de cigarro eletrônico.
Química
Cigarro eletrônico, faz mal assim mesmo?
Dispositivos amplamente difundidos hoje e sem relatos concretos sobre os seus malefícios são os cigarros eletrônicos. Por mais que não saibamos de maneira clara o quão fazem mal a saúde é claro e evidente que não fazem bem! Vamos entender o seu funcionamento e desvendar o motivo pelo qual com certeza ele fazem mal a saúde.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.