Whatsapp icon Whatsapp

Raízes complexas de uma equação polinomial

As raízes complexas de uma equação polinomial ocorrem em pares em razão dos seus conjugados.
Resolva equações polinomiais que possuem raízes complexas
Resolva equações polinomiais que possuem raízes complexas

Ao resolver uma equação polinomial p(x) = 0, podemos identificar várias raízes e, dentre elas, destacam-se as raízes complexas. Se um número complexo z é raiz de uma equação polinomial de grau n (n > 1, n  ), então o conjugado de z é também raiz da equação. Em toda equação polinomial, quando houver raízes complexas, o seu número será sempre par em razão do conjugado.

Antes de vermos alguns exemplos de raízes complexas, vamos relembrar alguns conceitos dos números complexos. Um número complexo z é escrito na forma z = a + b.i e seu conjugado z é representado na forma z = a – b.i. Devemos ter cuidado ao realizar operações com os números complexos, veja alguns exemplos:

Adição e Subtração:

Nas operações de adição e subtração, devemos operar a parte real de um complexo com a parte real de outro, enquanto a parte imaginária de um só é operada com a parte imaginária do outro. Considere os números complexos z1 = a + bi e z2 = c + di:

z1 + z2 = (a + c) + (b + d).i
z1 – z2 = (a – c) + (b – d).i

Multiplicação:

Devemos aplicar a propriedade distributiva para todos os elementos dos complexos:

z1 . z2 = ac – bd + (ad + bc).i

Operações com Conjugados:

Observe como são feitas as operações com conjugados de um número complexo
Observe como são feitas as operações com conjugados de um número complexo

Como encontrar raízes complexas em uma equação polinomial?

Vamos resolver a seguinte equação polinomial: x4 – 2x2 + 16x – 15 = 0, sabendo que z = 1 + 2i é solução da equação.

Não pare agora... Tem mais depois da publicidade ;)

Se z = 1 + 2i é solução da equação, então seu conjugado z = 1 – 2i também é solução. Sendo assim, o produto (x – z).(x – z) divide o polinômio p(x) = x4 – 2x2 + 16x – 15:

(x – z).(x – z) = [x – (1 + 2i )] [x – (1 – 2i)]

(x – z).(x – z) = (x – 1 – 2i).(x – 1 + 2i)

(x – z).(x – z) = x² – x + 2xi – x + 1 – 2i – 2xi + 2i – (2.i)²

(x – z).(x – z) = x² – 2x + 1 – 4.(√– 1)²

(x – z).(x – z) = x² – 2x + 5

Dividindo o polinômio x4 – 2x2 + 16x – 15 por x² – 2x + 5, obtemos a equação polinomial: x² + 2x – 3 = 0. Já essa equação pode ser facilmente resolvida através da fórmula de Bhaskara:

Δ = b² – 4.a.c

Δ = 2² – 4.1.(– 3)

Δ = 4 + 12

Δ = 16

x = – b ± √Δ
       2.a

x = – 2 ± √16
        
2.1

x = – 2 ± 4
        
2

x1 = – 2 + 4
        
2

x1 = 2
       
2

x1 = 1

x2 = – 2 – 4
        
2

x2 = – 6
        
2

x2 = – 3

Portanto, o conjunto solução da equação polinomial x4 – 2x2 + 16x – 15 = 0 é S = {– 3, 1, 1 + 2i, 1 – 2i}.

Publicado por Amanda Gonçalves Ribeiro

Artigos Relacionados

Conjugado
Definição do conjugado e sua utilização nas operações de números complexos.
O número conjugado
Você sabe o que é um número conjugado? Clique aqui e descubra!
Polinômios
Você sabe o que são polinômios? Ou funções polinomiais? Clique aqui e entenda!
Potência i
Potências de uma unidade imaginária.
video icon
Escrito"Função Seno com Geogebra" sobre fundo bege e amarelo.
Matemática
Função Seno com Geogebra
Nesta aula utilizaremos o software gratuito geogebra para mostrar as possíveis variações da função seno. Analisaremos o eixo central, a amplitude, o máximo e mínimo, a imagem e o período da função seno.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.