Whatsapp icon Whatsapp

Teorema de Jacobi

Esse teorema diminui os valores dos elementos de uma matriz quadrada, facilitando os cálculos. Vejamos seu conceito:

“Seja A uma matriz quadrada, se multiplicarmos todos os elementos de uma fila (linha ou coluna) por um mesmo número, e somarmos os resultados dos elementos aos seus correspondentes de outra fila (linha ou coluna), obteremos outra matriz B. Entretanto, podemos afirmar que o det A = det B”.

Atente-se ao simples detalhe de somar os elementos aos seus correspondentes de outra fila, ou seja, se multiplicarmos uma linha por um número qualquer (k), deveremos somar o resultado (elemento x k) pelos elementos de outra linha. Vejamos um exemplo para melhor compreender esse teorema.

Exemplo:

Aplique o Teorema de Jacobi na matriz A.

Vamos aplicar o teorema de Jacobi na matriz A, multiplicando a primeira linha por (-2) e somando os resultados à 2ª linha. Com isso, obteremos outra matriz:

Não pare agora... Tem mais depois da publicidade ;)

Veja que os elementos da segunda linha ficaram com valores menores, ou seja, em determinadas situações em que se tem uma matriz com uma linha que possui elementos com valores muito altos, pode-se utilizar o teorema de Jacobi, até mesmo para eliminar certos elementos (deixar os elementos com valor nulo, ou seja, iguais a zero).

Esse processo é totalmente semelhante ao de resolução de sistemas lineares, no qual se multiplica uma equação por um número e soma-se essa equação obtida pela multiplicação à outra. Trata-se de um processo baseado no teorema de Jacobi.

Publicado por Gabriel Alessandro de Oliveira
Assista às nossas videoaulas

Artigos Relacionados

Condições para equivalência de sistemas
Condições para equivalência, uma análise dos coeficientes das equações que compõem o sistema linear. Compreendendo as condições para equivalência de um sistema linear.
Equivalência de sistemas lineares
Conceituação sobre equivalência de sistemas lineares. Como comparar dois sistemas e concluir que eles são equivalentes.
Matriz Triangular
Saiba mais sobre a matriz triangular e aprenda a calcular seu determinante.
Regra de Sarrus
Conheça a regra de Sarrus. Aprenda a calcular o determinante de uma matriz de ordem 2 e de ordem 3 por essa regra. Entenda como ela funciona.
Teorema de Binet
A importância do Teorema de Binet para o cálculo de determinantes de matrizes- produto.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.