Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Trigonometria
  4. Trigonometria no Triângulo Qualquer

Trigonometria no Triângulo Qualquer

Os problemas envolvendo trigonometria são resolvidos através da comparação com triângulos retângulos. Mas no cotidiano geralmente não encontramos tamanha facilidade, algumas situações envolvem triângulos acutângulos ou triângulos obtusângulos. Nesses casos necessitamos do auxílio da lei dos senos ou dos cossenos.

Lei dos senos

A lei dos senos estabelece relações entre as medidas dos lados com os senos dos ângulos opostos aos lados. Observe:

Exemplo 1

No triângulo a seguir, determine o valor dos segmentos x e y.

Aplicando a lei dos senos, temos:


Lei dos cossenos

Nos casos em que não podemos aplicar a lei dos senos, temos o recurso da lei dos cossenos. Ela nos permite trabalhar com a medida de dois segmentos e a medida de um ângulo. Dessa forma, se dado um triângulo ABC de lados medindo a, b e c, temos:

a² = b² + c² - 2 * b * c * cos A
b² = a² + c² - 2 * a * c * cos B
c² = a² + b² - 2 * a * b * cos C


Exemplo 2

Determine o valor do lado oposto ao ângulo de 60º. Observe figura a seguir:

Não pare agora... Tem mais depois da publicidade ;)




x² = 6² + 8² - 2 * 6 * 8 * cos 60º
x² = 36 + 64 – 96 * 1/2
x² = 100 – 48
x² = 52
√x² = √52
x = 2√13

Exemplo 3

Em um triângulo, os lados de medidas 6√3 cm e 8 cm formam um ângulo de 30º. Determine a medida do terceiro lado.

De acordo com a situação, o lado a ser determinado é oposto ao ângulo de 30º. Dessa forma, aplicamos a fórmula da lei dos cossenos da seguinte maneira:


x² = (6√3)² + 8² - 2 * 6√3 * 8 * cos 30º
x² = 36 * 3 + 64 – 2 * 6√3 * 8 * √3/2
x² = 108 + 64 – 96 * √3 * √3/2
x² = 172 – 48 * 3
x² = 172 – 144
x² = 28
x = 2√7 cm

Publicado por: Marcos Noé Pedro da Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Lista de Exercícios

Questão 1

Um triângulo ABC possui os ângulos A = 30° e C = 120°. Além disso, o lado AB desse triângulo mede 100 cm. Qual é a medida do lado AC? (Considere √3 = 1,7).

 

a) 56,6 cm

b) 66,6 cm

c) 76,6 cm

d) 86,6 cm

e) 96,6 cm

Questão 2

O triângulo ABC, na imagem abaixo, possui o lado AB = 50 cm e o lado CB = 30 cm. Sabendo que o ângulo C = 60°, qual é o seno do ângulo A? (considere √3 = 1,7 e sen31° = 0,51).

 

a) 30°

b) 31°

c) 32°

d) 33°

e) 34°

Mais Questões
Assuntos relacionados
Área de um triângulo com base na trigonometria
ângulo de triângulo, lados do triângulo, área do triângulo, fórmulas para o cálculo da área, área de qualquer triângulo, trigonometria e área de triângulos.
Conheça a lei dos cossenos, uma propriedade trigonométrica que pode ser aplicada em qualquer triângulo
Lei dos cossenos
Você conhece a Lei dos Cossenos? Aprenda a demonstrar essa importante propriedade e a aplicá-la para um triângulo qualquer.
A lei dos senos pode ser aplicada a um triângulo qualquer, como o representado na imagem
Demonstração da lei dos senos
Clique para obter uma demonstração da lei dos senos e aprofunde seus conhecimentos relacionados a triângulos que não possuem ângulo reto.
Relações no triângulo retângulo
Triângulo, Triângulo retângulo, Elementos do triângulo retângulo, Características do triângulo retângulo, Teoremas de Pitágoras, Relação métrica do triângulo retângulo.
Teorema de Pitágoras: uma das mais importantes relações da Matemática
A Magia de Pitágoras
Conhecendo o Teorema de Pitágoras.
Medidas de Ângulos
Clique aqui e aprenda a transformar as unidades de medidas de ângulos.
Relações Trigonométricas Fundamentais
Determinando o valor de ângulos de acordo com as relações fundamentais.
Fórmulas do arco metade
Clique aqui e aprenda quais são e quando utilizar as fórmulas do arco metade.
A lei dos senos permite relacionar lados e ângulos de qualquer triângulo
A Lei dos Senos - compreendendo sua aplicação
Clique aqui e aprenda como e quando aplicar a lei dos senos!