Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria
  4. Volume do Tronco da Pirâmide

Volume do Tronco da Pirâmide

A intersecção de um plano a uma determinada altura da base de uma pirâmide gera uma nova figura geométrica espacial denominada tronco da pirâmide.

O tronco da pirâmide é composto de duas bases com áreas de medidas diferentes, lembrando que a área depende do formato da figura plana em questão. No tronco existem duas alturas que não devem se confundidas: uma delas é a altura (h) do tronco, que é a distância entre as duas bases de modo que o ângulo formado entre uma reta imaginária e as bases seja igual a 90º. A outra medida corresponde à geratriz (g) do tronco, que se refere à altura da lateral da face, a qual forma com as bases ângulos diferentes de 90º.

A expressão utilizada na determinação do volume de um tronco da pirâmide em relação à medida da altura e das áreas das bases é:

 , em que:

V = volume
h = altura do tronco da pirâmide
A = área da base de maior superfície
a = área da base de menor superfície


Exemplo 1

Um tronco da pirâmide possui como bases dois quadrados de lados medindo 16 e 24 centímetros, respectivamente. Sabendo que a altura do tronco é equivalente a 42 cm, determine seu volume.

Área quadrado maior: 24 * 24 = 576 cm²

Área quadrado menor: 16 * 16 = 256 cm²





Exemplo 2

Um reservatório possui as dimensões de um tronco da pirâmide com lado da base menor medindo 2 m e lado da base maior medindo 8 m. Considerando que a medida da altura corresponde a √8 m, calcule sua capacidade de armazenamento.

Área quadrado maior: 8 * 8 = 64 m²

Área quadrado menor: 2 * 2 = 4 m²

Não pare agora... Tem mais depois da publicidade ;)



Sabemos que 1 m³ (metro cúbico) corresponde a 1000 litros, dessa forma 79,20 m³ correspondem a 79,20 * 1000 que é equivalente a 79.200 litros. Portanto, o reservatório armazena em sua capacidade máxima 79.200 litros.



Publicado por: Marcos Noé Pedro da Silva
Assista às nossas videoaulas
Assuntos relacionados
Cada tipo de sólido possui uma fórmula para o cálculo de seu volume
Fórmulas para Cálculo de Volume de sólidos
Aprenda fórmulas para calcular o volume de sólidos, tendo em vista sua forma e dimensões.
Você consegue contar quantos triângulos existem nessa imagem?
Congruência de Triângulos
O estudo de congruência de triângulos. Buscando formas para comparar os elementos do triângulo a fim de estudar a congruência destas figuras planas.
O princípio de Cavalieri é usado para demonstrar algumas fórmulas para volume de sólidos geométricos
Princípio de Cavalieri
Clique para saber mais sobre o Princípio de Cavalieri e como ele é usado para demonstrar algumas fórmulas para volumes de sólidos geométricos.
Os poliedros convexos são aqueles que estão em um mesmo semiespaço, limitados por uma de suas faces
Relação de Euler
Clique e aprenda o que é a relação de Euler e como essa fórmula relaciona o número de faces, arestas e vértices de poliedros convexos.
Na parte de baixo, o tronco da pirâmide
Tronco da pirâmide
Clique e aprenda o que é um tronco de uma pirâmide, como esse sólido é formado, seus elementos e o modo de calcular sua área e volume.
Pirâmide que sofreu uma secção transversal
Área do tronco da pirâmide
Clique e aprenda a calcular a área do tronco da pirâmide e nunca mais erre em questões sobre esse assunto!
O Teorema de Pitágoras no Cotidiano
Clique aqui e entenda como o Teorema de Pitágoras está presente em nosso cotidiano.
Teorema de Tales
Veja aqui o que o teorema de Tales afirma e entenda como aplicá-lo em um triângulo. Veja também exercícios que ilustram a sua aplicação.
Aplicações do Teorema de Tales
Clique aqui e aprenda quando e como utilizar o Teorema de Tales!
Volume da Pirâmide
Clique aqui e aprenda como é fácil determinar o volume da pirâmide!
Comprimento da Circunferência
Determinando o comprimento da circunferência de acordo com a medida do raio e do valor de π.
Duas Retas Paralelas Cortadas por uma Transversal
Determinação de ângulos com base na semelhança de triângulos.