Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria
  4. Teorema de Tales

Teorema de Tales

Teorema de Tales afirma que um feixe de retas paralelas determina, em duas transversais quaisquer, segmentos proporcionais. Desse modo, se temos duas retas paralelas “cortadas” por duas transversais, os segmentos formados por essa intersecção são proporcionais.

Leia também: Duas retas paralelas cortadas por um transversal

Representação e fórmula

Para melhor entendermos o enunciado do teorema, representaremos graficamente o feixe de retas paralelas interceptadas por retas transversais.

Observe que as retas r, s e t são paralelas e denotadas por r//s//t, as retas p e q são as transversais, os segmentos AB, BC, DE e EF foram determinados pelas intersecções das retas, e que, pelo teorema de Tales, esses segmentos são proporcionais, ou seja, as razões entre eles são iguais.

Em consequência das propriedades das proporções, podemos escrever o resultado do teorema de Tales destas maneiras:

  • Exemplos

Na figura a seguir, r//s//t, determine as medidas dos segmentos.

Aplicando o teorema de Tales, temos:

Para determinar a medida dos segmentos, devemos substituir os valores de x.

Teorema de Tales nos triângulos

O teorema de Tales aplicado nos triângulos é mais conhecido por teorema da bissetriz interna. Esse afirma que:

“Em todo triângulo, a bissetriz de qualquer ângulo interno divide o lado oposto a ele em duas partes proporcionais, em relação a seus lados adjacentes.

Observe que o segmento AD é a bissetriz do triângulo ABC, visto que ele divide o ângulo BÂC em duas partes iguais. De acordo com o teorema, o segmento de reta AD divide o lado oposto, ou seja, o lado BC, em dois segmentos proporcionais aos lados adjacentes, isto é, os lados AB e AC são proporcionais aos lados BD e DC nessa ordem, e, portanto, podemos escrever:

Não pare agora... Tem mais depois da publicidade ;)

  • Exemplo

Considere o triângulo seguinte e determine o valor de x, sabendo que o segmento AD é a bissetriz relativa ao lado BC.

Saiba mais: Intersecção de retas concorrentes

Exercícios resolvidos

Questão 1 – (Enem) A planta de determinado bairro de uma cidade apresentou o desenho a seguir. O responsável pelo departamento de obras do município constatou a ausência de algumas medidas nessa planta, as quais ele representou no projeto por x e y.

Com base nos dados do projeto, esse responsável pôde calcular corretamente os respectivos valores de x e y:

a) 35 m e 56 m

b) 25 m e 40 m

c) 35 m e 70 m

d) 56 m e 70 m

e) 56 m e 84 m

Solução

Observando a imagem, temos que o teorema de Tales pode ser aplicado na planta do bairro. Os segmentos que ligam as ruas A e B são paralelos, logo, temos:

Portanto, os valores de x e y são, respectivamente, 35 m e 56 m.

R: alternativa a

Questão 2 – Em um triângulo ABC, o perímetro é 54 cm, BS é a bissetriz, AS = 8 cm, e SC = 10 cm. Determine a medida do lado AB.

Solução

Inicialmente vamos ilustrar o triângulo descrito no problema, nomeando x e y os lados dos quais não conhecemos a medida.

Como foi dado que o perímetro do triângulo ABC é 54 cm, temos que a soma de todos os lados é igual a 54 cm.

x + y + 18 = 54

x + y = 54 -18

x + y = 36

Por outro lado, podemos aplicar o teorema da bissetriz interna no triângulo ABC, tendo que:

Isolando o valor de x na primeira equação, temos que x = 36 – y, e substituindo esse valor na segunda equação, temos que:

10x = 8y

10 · (36 – y) = 8y

360 – 10y = 8y

360 = 8y + 10y

18y = 360

y = 20

Substituindo o valor de y em qualquer uma das equações, temos:

x = 36 – y

x = 36 – 20

x = 16

Portanto, o lado AB mede 16 cm.

Publicado por: Robson Luiz
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

(UFSM - 03) A crise energética tem levado as médias e grandes empresas a buscarem alternativas na geração de energia elétrica para a manutenção do maquinário. Uma alternativa encontrada por uma fábrica foi a de construir uma pequena hidrelétrica, aproveitando a correnteza de um rio que passa próximo às suas instalações. Observando a figura e admitindo que as linhas retas r, s e t sejam paralelas, pode-se afirmar que a barreira mede

a) 33

b) 38

c) 43

d) 48

e) 53

Questão 2

(Fuvest–SP) A sombra de um poste vertical, projetada pelo sol sobre um chão plano, mede 12 m. Nesse mesmo instante a sombra de um bastão vertical de 1 m de altura mede 0,6 m. Qual a altura do poste?

Mais Questões
Assuntos relacionados
O Teorema de Pitágoras no Cotidiano
Clique aqui e entenda como o Teorema de Pitágoras está presente em nosso cotidiano.
Volume da Pirâmide
Clique aqui e aprenda como é fácil determinar o volume da pirâmide!
Volume do Tronco da Pirâmide
Determinando os elementos e calculando o volume do tronco da pirâmide.
Segmentos, dois a dois, cujas razões são iguais
Segmentos proporcionais
Confira casos em que as duas razões entre quatro segmentos de reta são iguais e, por isso, os segmentos são proporcionais!
Teorema que avalia os resultados de uma reta paralela a um lado de um triângulo
Teorema fundamental da semelhança
Clique para aprender sobre um caso interessante de semelhança de triângulos decorrente do teorema fundamental da semelhança.
Todas as posições relativas entre reta e plano presentes na mesma ilustração
Posições relativas entre reta e plano
Clique para aprender o que são retas contidas no plano, secantes ou paralelas a ele: as chamadas posições relativas entre reta e plano.
Segmentos de reta paralelos nos trilhos de um trem
Paralelismo
Clique para aprender o que é paralelismo e as propriedades mais importantes relacionadas com essa posição relativa entre retas e planos.
Volume de um Sólido Geométrico
Volume: definição e exemplos de sólidos geométricos
Esfera
Corpo Esférico
Clique aqui e aprenda a calcular a área e o volume de um corpo esférico.
Volume do Paralelepípedo
O volume do paralelepípedo corresponde à multiplicação do comprimento pela largura e pela altura. Confira!
Teorema da Bissetriz Interna
Relações métricas num triângulo qualquer
Aplicação da relação entre volumes
Aplicando a relação entre volumes, um estudo para determinar relações entre as medidas que determinam esses volumes.