Determinando a Equação Geral da Reta

Os estudos em Geometria Analítica demonstram que uma reta possui representação geométrica no plano cartesiano e pode ser representada por uma equação. Euclides, em seus teoremas e postulados, fundamentalizava que uma reta passa por infinitos pontos e que por dois pontos passa somente uma única reta. Partindo desse princípio estabelecemos que em uma reta os pontos são colineares. Dada uma reta, podemos constituir sua equação geral partindo da definição de localização de dois pontos pertencentes à reta r: ponto A de coordenadas (x1,y1), ponto B de coordenadas (x2,y2) e um ponto Q (x,y)

Usaremos a seguinte matriz na definição da equação geral da reta:

Desenvolvendo o determinante da matriz encontramos a equação geral da reta:

x1y2 + xy1 + x2y – xy2 – x2y1 – x1y = 0
x(y1 – y2) + y(x2 – x1) + (x1y2 – x2y1) = 0

Os valores em x e y são números reais, então podemos considerar a seguinte situação:
y1 – y2 = a
x2 – x1 = b
x1y2 – x2y1 = c

A equação geral da reta: ax + by + c = 0

Exemplo: Determine a equação geral da reta r que passa pelos pontos P(1,1) e X(4,6).

1*6*1 + 1*1*x + 1*4*y – 1*6*x – 1*4*1 – 1*y*1 = 0
6 + x + 4y – 6x – 4 – y = 0
– 5x + 3y – 2 = 0

– 5x + 3y + 2 = 0: equação geral da reta que passa pelos pontos P(1,1) e X(4,6)

Publicado por Marcos Noé Pedro da Silva
Matemática do Zero
Matemática do Zero | Plano Cartesiano
Nessa aula veremos o que é e para que serve o plano cartesiano.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos