Transformações trigonométricas: fórmulas de multiplicação

As transformações trigonométricas são as fórmulas usadas para calcular a multiplicação de arcos de ângulos, como sen2a, cos2a e tg2a.
As transformações trigonométricas são fórmulas usadas para encontrar sen2a, cos2a e tg2a

Para iniciar a discussão sobre as fórmulas de multiplicação das transformações trigonométricas, é bom pensarmos em uma breve comparação: suponha que seja necessário encontrar o produto entre o ângulo de 30° e o número 2. O resultado desse produto será: 2·30° = 60°. Agora, façamos os cálculos para o seno de 30°:

Sen30° = 1/2

sen60° = sen2·30° = 1/2·1/2 = 1/4.

Entretanto, observe que o seno de 60° não é igual a 1/4. Isso acontece porque o método usado na multiplicação está incorreto, uma vez que o produto envolve os senos dos ângulos de 30° e não o ângulo em si.

As técnicas corretas para realizar essa multiplicação são parte do que conhecemos como transformações trigonométricas.

Seno

Sejam a e b considerados ângulos quaisquer, a fórmula usada para encontrar sen2a é:

sen(a + b) = sena·cosb + senb·cosa

Observe que, se b = a, então a + b = 2a, portanto:

sen2a = sena·cosa + sena·cosa

sen2a = 2sena·cosa

Note que podemos usar a fórmula relativa à adição do seno de dois arcos, substituindo a e b pelo mesmo ângulo, ou podemos usar esse último resultado para encontrar essa soma.

Cosseno

Considerando a e b como ângulos quaisquer, existem três fórmulas que podem ser usadas para determinar o cos2a. Todas elas têm como base os seguintes resultados:

cos(a + b) = cosa·cosb – sena·senb

e

sen2a + cos2a = 1

Observe que, se a = b, teremos cos2a, portanto:

cos(a + b) = cosa·cosb – sena·senb

cos2a = cosa·cosa – sena·sena

cos2a = cos2a – sen2a

Essa é uma das fórmulas que podem ser usadas para determinar cos2a. As outras são obtidas a partir do seguinte fato:

sen2a + cos2a = 1

sen2a = 1 – cos2a

Substituindo o valor do sen2a na fórmula do cos2a, teremos:

cos2a = cos2a – sen2a

cos2a = cos2a – (1 – cos2a)

cos2a = cos2a – 1 + cos2a

cos2a = 2cos2a – 1

Caso façamos uma substituição análoga, para cos2a = 1 – sen2a, teremos:

cos2a = cos2a – sen2a

cos2a = 1 – sen2a – sen2a

cos2a = 1 – 2sen2a

Tangente

Se a e b são ângulos quaisquer diferentes de 90°, a fórmula usada para encontrar tg2a é:

tg(a + b) =    tga + tgb  
                  1 – tga·tgb

Fazendo a = b, teremos:

tg(a + a) =    tga + tga   
               1 – tga·tga

tg2a =       2tga     
         1 – tg2a

Publicado por Luiz Paulo Moreira Silva
Geografia
Biomassa
Assista à videoaula e entenda o que é biomassa. Saiba quais são suas utilizações no mundo e sua importância.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos