Ângulos

Ângulos são a região interna formada por duas semirretas que partem de um mesmo ponto.

A palavra ângulo é usada para nomear dois objetos. O primeiro é a abertura entre duas semirretas que compartilham o mesmo ponto inicial ou entre dois segmentos de reta que possuem apenas uma extremidade comum. O segundo é um número usado para medir essa abertura. Sendo assim, quanto maior o valor numérico atribuído a um ângulo, maior será a abertura entre as duas semirretas relacionadas a ele.

Definição formal de ângulo

Um ângulo é o conjunto de pontos formados por duas semirretas (lados do ângulo) que possuem o mesmo ponto de partida (vértice do ângulo). Para compreender o que é o ponto de partida de uma semirreta, clique aqui.

Exemplo de ângulo formado pela região interna a dois segmentos de reta
Exemplo de ângulo formado pela região interna a dois segmentos de reta

Na imagem acima, as semirretas com origem no ponto O definem o ângulo AÔB, que também pode ser representado por uma letra minúscula ou por uma letra grega minúscula. A unidade de medida usada para os ângulos é o grau, representado pelo símbolo ° logo depois do número referente a ele.

Os ângulos também podem dar a ideia de movimento do ponto. Esse movimento sempre será circular, e uma volta completa representará a medida 360°.

Medindo ângulos

O instrumento utilizado para medir um ângulo é o transferidor. Observe que a distância entre dois segmentos de reta é diferente dependendo do lugar escolhido para extrair essa medida:

Não pare agora... Tem mais depois da publicidade ;)

Posicione o vértice do ângulo no centro do transferidor, como indicado. Quando uma das semirretas estiver apontando para 0°, a outra apontará para o ângulo formado por elas naquele sentido. No exemplo, o sentido é o horário, por isso, acompanhamos no transferidor os números dispostos nesse sentido.

Ângulos notáveis: ângulo raso

O ângulo raso mede 180°. Como uma volta completa representa um ângulo de 360° e 180° é exatamente metade de 360°, o ângulo raso também representa meia-volta.

Analisando a imagem acima, notamos que as semirretas que formam um ângulo raso são “lados” de uma reta. Na realidade, se marcarmos um ponto de interesse sobre uma reta, ao medir o ângulo formado nesse ponto, encontraremos 180°.

Ângulos notáveis: ângulo reto

O ângulo reto mede 90°. Ele equivale a um quarto de volta, já que 90° é igual a um quarto de 360° – a volta completa. Esse ângulo é muito usado em propriedades de figuras geométricas com relação à sua altura, pois esta é o segmento de reta que liga o ponto “mais alto” de uma figura ao solo, formando um ângulo de 90°.

Ângulos notáveis

Alguns ângulos são considerados notáveis por causa de sua grande relevância nos cálculos matemáticos e por serem encontrados com mais frequência na natureza e nas obras humanas. Esses ângulos são 30°, 45° e 60°, respectivamente AÔB1, AÔB2 e AÔB3.

Ângulos notáveis e alguns instrumentos que os representam
Ângulos notáveis e alguns instrumentos que os representam
Publicado por: Luiz Paulo Moreira Silva
Assista às nossas videoaulas
Assuntos relacionados
A soma dos ângulos internos de um triângulo é fixa
Soma dos ângulos internos de um triângulo
Clique para entender a soma dos ângulos internos de um triângulo e para obter exemplos dessa soma e a demonstração desse resultado.
Ângulos alternos internos ocupam posições alternadas no interior de retas paralelas
Ângulos alternos internos e externos
Clique e descubra o que são ângulos alternos internos e alternos externos, bem como as propriedades que eles possuem.
Imagem bidimensional na tela do computador e maquete tridimensional sobre o teclado
Dimensões do espaço
Clique e aprenda o que são as dimensões do espaço e como os objetos, figuras e sólidos geométricos comportam-se diante delas.
Ferramentas usadas para medir e construir ângulos no círculo trigonométrico
Círculo trigonométrico
Clique para aprender o que é um círculo trigonométrico, como construí-lo e o modo como o seno e o cosseno são marcados sobre ele.
A diagonal de um quadrado é um segmento que liga vértices
Diagonal do quadrado
Clique para aprender duas formas de calcular a diagonal de um quadrado e veja alguns exemplos desses cálculos.
Ângulos formados por uma reta transversal a duas retas paralelas
Ângulos colaterais internos e externos
Clique para aprender o que são ângulos colaterais internos e externos e também suas propriedades!
Ângulos opostos pelo vértice são congruentes, isto é, possuem medidas iguais
Ângulos opostos pelo vértice
Clique e aprenda o que são ângulos opostos pelo vértice e ângulos adjacentes, bem como as propriedades mais importantes que os envolvem.
Os polígonos regulares, como são hexágonos, possuem a mesma razão de semelhança.
Área de figuras semelhantes
Clique para aprender a razão entre as áreas de duas figuras semelhantes e saiba também a diferença entre ela e a razão de semelhança entre figuras.
O compasso é um objeto usado para desenhar círculos e circunferências
Elementos do círculo e da circunferência
Clique para aprender os elementos do círculo e da circunferência e obtenha um exemplo de cada uma dessas partes.
A relação entre as cordas de uma circunferência é uma propriedade das relações métricas
Relações métricas na circunferência: relação entre cordas
Clique e aprenda sobre relações métricas na circunferência, propriedades que podem expressar a relação e a proporcionalidade entre cordas.
Polígono regular de seis lados inscrito em uma circunferência
Propriedades do polígono regular inscrito
Aprenda algumas propriedades do polígono regular inscrito na circunferência e saiba como relacionar medidas e proporções dessa figura.
O hexágono regular é um exemplo de polígono
Polígonos
Aprenda o que são polígonos, descubra algumas das propriedades dessas figuras e entenda a diferença entre polígonos convexos e regulares.
Exemplo de eneágono regular com destaque para um triângulo, que pode ser usado para calcular a área dessa figura
Área do polígono regular
Clique e aprenda a calcular a área de um polígono regular por meio de uma fórmula que utiliza as medidas de seu lado e seu apótema.
As relações métricas podem ser usadas para calcular medidas do hexágono regular inscrito em uma circunferência
Relações métricas no hexágono regular inscrito
Clique e aprenda o que são relações métricas no hexágono regular inscrito e descubra como usá-las para calcular as medidas do lado e do apótema.
Ângulos externos de um hexágono regular
Soma dos ângulos externos de um polígono
Clique para aprender qual é a soma dos ângulos externos de um polígono convexo e veja como é possível obter esse resultado.
Secante, cossecante e cotangente são razões relacionadas ao ciclo trigonométrico
Secante, cossecante e cotangente
Clique para descobrir o que são as razões secante, cossecante e cotangente e quais são suas relações com seno, cosseno e tangente.
Ângulos notáveis são os mais usados na Trigonometria
Ângulos notáveis
Conheça os ângulos notáveis e descubra uma maneira de encontrá-los a partir da construção de triângulos.
A relação fundamental da Trigonometria é baseada no teorema de Pitágoras
Primeira relação fundamental da Trigonometria
Clique e aprenda o que é a primeira relação fundamental da Trigonometria e saiba como esse teorema relaciona-se com o ciclo trigonométrico.
Por meio das relações fundamentais da Trigonometria, é possível relacionar as razões trigonométricas
Segunda relação fundamental da Trigonometria
Clique e descubra qual é a segunda relação fundamental da Trigonometria e entenda como esse teorema associa as razões trigonométricas básicas.
As transformações trigonométricas são fórmulas usadas para encontrar sen2a, cos2a e tg2a
Transformações trigonométricas: fórmulas de multiplicação
Aprenda o que são as transformações trigonométricas e saiba como essas fórmulas podem ser usadas para calcular a multiplicação envolvendo arcos.
Entre os erros mais frequentes em questões de Trigonometria, está o uso incorreto das razões trigonométricas
Três erros mais cometidos na Trigonometria
Descubra quais são os três erros mais cometidos em Trigonometria e saiba como resolver corretamente questões com esse conteúdo.
Seno e cosseno são duas das razões trigonométricas que podem aparecer em inequações
Inequações trigonométricas: cosx < k
Clique e aprenda a resolver inequações trigonométricas do tipo cosx < k e conheça os fundamentos para essa resolução.
Toda inequação trigonométrica pode ser reduzida a uma inequação e utilizar o ciclo trigonométrico na resolução
Inequações trigonométricas: tgx > k
Clique para aprender a solucionar uma das inequações trigonométricas, tgx > k, por meio do ciclo trigonométrico e da fórmula obtida a partir dele.
É possível solucionar inequações trigonométricas com o auxílio do ciclo trigonométrico
Inequações trigonométricas: senx > k
Clique e descubra como resolver, com o uso do ciclo trigonométrico, senx > k, uma das inequações trigonométricas.
A lei dos senos pode ser aplicada a um triângulo qualquer, como o representado na imagem
Demonstração da lei dos senos
Clique para obter uma demonstração da lei dos senos e aprofunde seus conhecimentos relacionados a triângulos que não possuem ângulo reto.
Exemplos de triângulos equiláteros formados por outros três triângulos congruentes obtusângulos
Triângulos
Clique para aprender o que são os triângulos e conheça quais os elementos dessa figura e as suas principais propriedades.
Unidade de medida usada para arcos de circunferências: radiano
Radiano
Clique e descubra o que é radiano, nome dado à medida do arco de uma circunferência de raio r quando esse arco também mede r. Medidas em radianos relacionam-se a ângulos centrais de uma circunferência, que, por sua vez, podem ser relacionados a um número real por meio de razões trigonométricas. Clique e confira!
Geometria plana
Entenda os principais conceitos da geometria plana. Conheça as principais figuras geométricas, e aprenda a calcular a área e o perímetro de cada uma delas.
Inclinação e coeficiente angular de uma reta
ângulo, reta, condição de existência da reta, pontos, plano cartesiano, tangente, inclinação da reta, como encontrar a inclinação da reta, coeficiente angular, tangente do ângulo
Retas perpendiculares
coeficiente angular, Retas perpendiculares, coeficiente angular de retas perpendiculares, condição de existência de retas perpendiculares, tangente, ângulo de inclinação.
Posições relativas de duas retas
Retas, retas paralelas, retas concorrentes, o que são retas paralelas, o que são retas concorrentes, Posições relativas de duas retas, coeficiente angular de retas paralelas, coeficiente angular de retas concorrentes.
Distância entre ponto e reta
Distância entre ponto e reta, reta, ponto, equação geral da reta, fórmula da distância entre ponto e reta, Equação fundamental, Distância entre dois pontos, coeficientes de uma reta.
Soma dos Ângulos Internos de um Polígono Regular
Polígonos: ângulos internos, ângulos externos, soma de ângulos.
Medidas de Ângulos
Clique aqui e aprenda a transformar as unidades de medidas de ângulos.
Ângulos no círculo
Clique aqui e conheça as características e propriedades dos ângulos no círculo!
Segmento de reta que começa em A e vai até B
Retas
Confira as principais ideias que envolvem retas e algumas propriedades básicas dessa figura geométrica!
Transferidor e alguns exemplos de ângulos
Ângulos complementares e suplementares
Aprenda o que são ângulos complementares e suplementares e veja alguns exemplos e definições importantes que envolvem esses conceitos.
Imagem composta por diversos retângulos de tamanhos variados
Retângulos
Descubra o que é retângulo e algumas características básicas que ele possui, decorrentes de sua definição e da família de figuras a que eles pertencem.