Whatsapp icon Whatsapp

Área de figuras semelhantes

A razão entre as áreas de duas figuras semelhantes é igual ao quadrado da razão de semelhança entre essas figuras.
Os polígonos regulares, como são hexágonos, possuem a mesma razão de semelhança.
Os polígonos regulares, como são hexágonos, possuem a mesma razão de semelhança.

Figuras semelhantes são aquelas que possuem ângulos correspondentes semelhantes e lados correspondentes proporcionais. Essa proporção entre os lados e a semelhança entre as figuras garantem também a existência de uma propriedade envolvendo suas áreas. Para compreender melhor essa propriedade, é necessário relembrar o conceito de razão de semelhança.

 

Razão de semelhança

A razão de semelhança é o resultado da divisão entre as medidas de um lado da primeira figura e o lado correspondente a ele da segunda figura. Isso só vale para figuras que são semelhantes. Os hexágonos regulares, representados a seguir, são exemplos de figuras semelhantes:

Hexágonos regulares semelhantes


Nessas figuras, a razão entre o lado AB e o lado GH é igual a 0,5. A razão entre os lados FE e LK também é 0,5, pois esses lados são correspondentes.

 

Áreas de figuras semelhantes

Suponha que as áreas de duas figuras sejam representadas por A1 e A2 e que essas figuras sejam semelhantes. Suponha também que L é a razão de semelhança entre as duas figuras, ou seja, L é o resultado da divisão entre dois lados correspondentes dessas duas figuras.

Nessa hipótese, a razão entre a área das figuras será igual ao quadrado da razão de semelhança, o que pode ser representado matematicamente da seguinte forma:

L2 = A1
      A2

Toda vez que dividimos as medidas de dois lados correspondentes de dois polígonos semelhantes o resultado é a razão de semelhança L. Se dividirmos as áreas desses mesmos polígonos, o resultado será L2.

Não pare agora... Tem mais depois da publicidade ;)


1º Exemplo – Dados os polígonos semelhantes a seguir, determine a área do segundo polígono, sabendo que a razão de semelhança entre eles é dois e que a área do polígono menor mede 4 cm2.

Quadrados semelhantes

Solução:

Quando a razão de semelhança é maior que um, significa que a maior medida foi dividida pela menor medida. Assim, podemos substituir os valores dados da área de uma das figuras e da razão de semelhança na fórmula abaixo:

L2 = A1
       A2

22 = A1
     4

4·22 = A1
4·4 = A1
16 = A1
A1 = 16 cm2

 

Lembre-se que 4 cm2 é o denominador porque a razão de proporcionalidade é maior que um. Caso contrário, seria numerador.

 

2º Exemplo – Qual a razão de semelhança entre dois polígonos cujas áreas são, respectivamente, iguais a 16 cm2 e 100 cm2?

Solução:

Geralmente, as razões de semelhança são números menores que um, portanto, a fração que origina essa razão deve ser estruturada com o menor número no numerador. Isso não é uma regra, é apenas o mais usual nesse conteúdo.

Uma segunda observação importante é a seguinte: não se esqueça de que a razão entre as áreas de duas figuras semelhantes é igual ao quadrado da razão de semelhança, portanto:

 

L2 = A1
      A2

L2 = 16
       100

L = √16
      √100

L = 4
     10

L = 0,4

Publicado por Luiz Paulo Moreira Silva

Artigos Relacionados

Divisão
Descubra o passo a passo de como realizar uma divisão sem erros e veja também como realizar divisão com números decimais.
Polígono formado por outros polígonos com número de lados em progressão aritmética
Polígonos convexos e regulares
Compreenda a definição de polígonos, bem como todos os pré-requisitos para que eles sejam considerados convexos e regulares.
Polígonos com mesmo formato, mas de tamanhos diferentes
Polígonos semelhantes
Clique para saber mais sobre os polígonos semelhantes e algumas propriedades decorrentes dessa semelhança.
A razão é o quociente entre dois números, e a proporção é a igualdade entre duas razões
Razão e proporção
Você sabe no que consiste o conceito de razão e proporção? Acesse e descubra!
Semelhança de triângulos
Entenda o que é semelhança entre triângulos e o teorema fundamental da semelhança de triângulos. Veja também os casos de semelhança de triângulos e como aplicá-los.
Para calcular a área do quadrado, multiplicamos a sua base e a sua altura.
Área e perímetro
Entenda o que é a área e o perímetro de uma figura plana. Conheça as principais fórmulas para o cálculo da área e do perímetro de figuras planas.
Ângulos notáveis e alguns instrumentos que os representam
Ângulos
Clique para aprender o que são ângulos, como medi-los e algumas características dos ângulos notáveis.
video icon
Enem
Pré-Enem | Análise e interpretação de obras literárias
O Pré-Enem é o intensivo preparatório do Brasil Escola para o Enem. Nele nós separamos os principais temas que devem ser estudados a menos de três meses do exame. Nesta transmissão você assistirá à aula sobre "Análise e interpretação de obras literárias" com a professora Helissa Soares!

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas