Whatsapp icon Whatsapp

Apótema

Considerando um círculo e um polígono inscrito de n lados, definimos como apótema de uma figura poligonal o segmento de reta que parte do centro da figura formando com o lado um ângulo de 90º, isto é, podemos dizer que o apótema é perpendicular ao lado do polígono.

A determinação da medida do apótema de um polígono está diretamente ligada ao raio da circunferência em que ele está inscrito, ao valor do ângulo central e à medida do lado do triângulo que forma o polígono. A figura a seguir é um hexágono regular inscrito na circunferência de raio medindo 4 cm. Vamos determinar a medida do apótema desse hexágono.

No hexágono regular inscrito na circunferência, a medida do raio r da circunferência é igual à medida do lado do polígono. Dessa forma, temos que o lado medirá 4 cm. Observando o hexágono notamos que ele é formado por 6 triângulos, todos com o apótema de mesmo valor, então basta destacarmos um deles e trabalharmos as relações existentes.

Podemos aplicar a relação de Pitágoras, basta calcular a medida do apótema:



a² + 2² = 4²
a² + 4 = 16
a² = 16 – 4
a² = 12
√a² = √12
a = 2√3 cm


Exemplo 2

Determine o apótema do quadrado inscrito na circunferência e a medida do raio, sabendo que o lado do quadrado mede 10 cm.

Não pare agora... Tem mais depois da publicidade ;)

Podemos trabalhar com o seguinte triângulo retângulo:

Determinando o apótema através da tangente do ângulo de 45º (360º : 8).

tg 45º = 5/a
1 = 5/a
a = 5 cm

Determinando o raio através do Teorema de Pitágoras:

r² = a² + 5²
r² = 5² + 5²
r² = 25 + 25
r² = 50
√r² = √50
r = 5√2 cm

Exemplo 3

Determine a medida do apótema da pirâmide a seguir, sabendo que sua altura mede 4,8 cm e o apótema da base mede 3,6 cm.

Resolução:
O apótema de uma pirâmide é o segmento que parte do vértice até a base da lateral, formando um ângulo reto, isto é, a medida da altura da face lateral.

a² = 3,6² + 4,8²
a² = 12,96 + 23,04
a² = 36
√a² = √36
a = 6 cm

 

Publicado por Marcos Noé Pedro da Silva

Artigos Relacionados

Dodecaedro: sólido platônico
Dodecaedro
Confira aqui as características de um dodecaedro e aprenda a calcular sua área e volume.
Polígonos inscritos e circunscritos na circunferência
Elementos do polígono regular inscrito
Clique e aprenda o que são os elementos do polígono regular inscrito em uma circunferência e conheça algumas propriedades básicas deles.
                                  Hexaedro ou cubo
Hexaedro Regular
Confira aqui qual a formação de um hexaedro, aprenda também a calcular seu volume e área.
Icosaedro: representante do elemento água
Icosaedro Regular
Você sabe o que é um icosaedro regular? Clique aqui e confira!
Perpendicularidade
Posições relativas, Posição relativa entre duas retas, Retas paralelas, Retas coincidentes, Reta paralela ao plano, Reta contida no plano, Retas e planos secantes ou concorrentes, Planos paralelos, Planos secantes, Planos coincidentes, perpendicularidade entre retas e planos.
Polígono formado por outros polígonos com número de lados em progressão aritmética
Polígonos convexos e regulares
Compreenda a definição de polígonos, bem como todos os pré-requisitos para que eles sejam considerados convexos e regulares.
As pirâmides mais conhecidas são as de base quadrada
Área da Pirâmide
Clique para aprender a calcular a área da pirâmide e veja algumas fórmulas que podem ser usadas para cálculo da área da base e área lateral!
video icon
Português
Argumento por exemplificação
A exemplificação sempre foi um recurso importante para a explicação de conceitos mais teóricos ou mais difíceis de serem compreendidos. No caso da argumentação, a exemplificação procura colocar o leitor a favor de quem a apresenta, pois esse gesto é, sobretudo, de generosidade intelectual.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas.