Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria
  4. Elementos do polígono regular inscrito

Elementos do polígono regular inscrito

Os elementos do polígono regular inscrito na circunferência são obtidos a partir de elementos da própria circunferência analisados sobre o polígono.

Dizemos que um polígono é inscrito em uma circunferência quando todos os seus vértices são pontos da circunferência. A partir dessa definição, pode-se perceber que todos os lados de um polígono inscrito são cordas da circunferência. Quando esse polígono é regular, podemos observar os seguintes elementos e suas propriedades.

Raio do polígono regular

O raio do polígono regular é também o raio da circunferência que o circunscreve (na qual ele está inscrito). Sendo assim, se o raio da circunferência mede r, então o raio do polígono regular inscrito nela também mede esse valor.

Com isso, podemos perceber que o raio do polígono inscrito é a distância do seu centro até um de seus vértices, que é equivalente ao raio da circunferência. A figura abaixo ilustra um dos raios de um polígono regular inscrito.

Ângulo central do polígono regular

O ângulo central do polígono regular é o ângulo central da circunferência que passa por dois vértices adjacentes (consecutivos) do polígono regular inscrito.

Em outras palavras, o vértice do ângulo central do polígono regular é o centro da circunferência e seus lados passam pelos vértices do polígono, como mostra a imagem a seguir:

Para calcular o valor do ângulo central, basta dividir o ângulo total do círculo pelo número de lados (n) do polígono. Sabendo que esse ângulo é de 360°, teremos:

Não pare agora... Tem mais depois da publicidade ;)

α = 360
      n

Apótema do polígono

A apótema de um polígono é o segmento de reta que vai do ponto médio de um de seus lados até o centro da circunferência na qual ele está inscrito. Todas as apótemas de um polígono regular possuem o mesmo comprimento.

O segmento a é a apótema do polígono inscrito
O segmento a é a apótema do polígono inscrito

Observe que os raios ao redor de uma apótema formam dois triângulos retângulos OBG e OAB. Pode-se mostrar que esses triângulos são congruentes da seguinte maneira:

1 – Os lados OA e OB são congruentes, pois são raios do círculo (e do polígono regular);

2 – Os dois triângulos possuem um ângulo reto;

3 – Os ângulos A e B são congruentes, pois esse triângulo é isósceles (possui dois lados congruentes) e os ângulos da base do triângulo isósceles são congruentes.

As três observações acima configuram o caso de congruência LAA (lado, ângulo e ângulo oposto). Portanto, podemos dizer que os dois triângulos são congruentes.

Além disso, como as apótemas e raios são do mesmo tamanho sempre que o polígono é regular, podemos afirmar que todo polígono regular pode ser dividido em triângulos congruentes a partir de seus raios. Assim, um hexágono regular, por exemplo, pode ser dividido em triângulos da seguinte maneira:

Todos os triângulos da figura acima são congruentes.

Polígonos inscritos e circunscritos na circunferência
Polígonos inscritos e circunscritos na circunferência
Publicado por: Luiz Paulo Moreira Silva
Assista às nossas videoaulas
Assuntos relacionados
A relação entre as cordas de uma circunferência é uma propriedade das relações métricas
Relações métricas na circunferência: relação entre cordas
Clique e aprenda sobre relações métricas na circunferência, propriedades que podem expressar a relação e a proporcionalidade entre cordas.
Polígono regular de seis lados inscrito em uma circunferência
Propriedades do polígono regular inscrito
Aprenda algumas propriedades do polígono regular inscrito na circunferência e saiba como relacionar medidas e proporções dessa figura.
O hexágono regular é um exemplo de polígono
Polígonos
Aprenda o que são polígonos, descubra algumas das propriedades dessas figuras e entenda a diferença entre polígonos convexos e regulares.
Exemplo de eneágono regular com destaque para um triângulo, que pode ser usado para calcular a área dessa figura
Área do polígono regular
Clique e aprenda a calcular a área de um polígono regular por meio de uma fórmula que utiliza as medidas de seu lado e seu apótema.
Distância entre dois pontos
Observe aqui noções de Geometria Analítica que auxiliam a estabelecer a distância entre dois pontos.
Apótema
Determinando o apótema de figuras planas e espaciais.
Polígonos Inscritos e Circunscritos
Relação entre Polígonos e Circunferências.
Ângulos no círculo
Clique aqui e conheça as características e propriedades dos ângulos no círculo!
Você consegue contar quantos triângulos existem nessa imagem?
Congruência de Triângulos
O estudo de congruência de triângulos. Buscando formas para comparar os elementos do triângulo a fim de estudar a congruência destas figuras planas.
Polígonos com mesmo formato, mas de tamanhos diferentes
Polígonos semelhantes
Clique para saber mais sobre os polígonos semelhantes e algumas propriedades decorrentes dessa semelhança.
Algumas das 275 diagonais de um polígono de 25 lados
Diagonais de um polígono
Clique para conhecer um modo de obter o número de diagonais de um polígono em que não é necessário contá-las uma a uma.
Polígono formado por outros polígonos com número de lados em progressão aritmética
Polígonos convexos e regulares
Compreenda a definição de polígonos, bem como todos os pré-requisitos para que eles sejam considerados convexos e regulares.
Exemplos de círculos coloridos
Círculo e circunferência
Entenda a diferença entre círculo e circunferência, além de algumas propriedades e definições básicas que envolvem essas figuras geométricas!
Os poliedros possuem como elementos: arestas, vértices e faces
Elementos de um poliedro
Clique para aprender o que são vértices, arestas e faces, isto é, os elementos de um poliedro!