Elementos de um poliedro

Poliedros são figuras geométricas formadas por planos e possuem como elementos vértices, arestas e faces.

Toda figura ou sólido geométrico possui alguns elementos característicos que são utilizados com frequência nos cálculos e definições matemáticas. Esses elementos são objetos matemáticos primitivos, isto é, pontos, retas e planos, que recebem nomes especiais em razão de sua importância. Porém, antes de definir esses elementos, é importante saber o que é um poliedro.

O que é um poliedro?

Os sólidos geométricos são figuras definidas no espaço tridimensional. Isso significa que é possível obter comprimento, largura e profundidade (geralmente chamada de altura) de um sólido. Já as figuras geométricas, definidas no espaço bidimensional, proporcionam apenas as medidas de comprimento e largura. Os sólidos geométricos são divididos em dois grandes conjuntos: aqueles que possuem curvas em sua constituição, conhecidos como corpos redondos, e aqueles formados apenas por planos, conhecidos como poliedros. Dessa maneira, um poliedro é um sólido geométrico em que todas as faces são planas.

Os poliedros são divididos em outros dois grandes grupos: prismas e pirâmides. Primeiramente serão expostos os elementos que todos os poliedros possuem, após isso, os elementos do prisma e, por fim, os elementos da pirâmide.

Elementos de um poliedro

Faces: São formadas por planos. Em um poliedro, duas faces nunca estão no mesmo plano, mas estão no mesmo espaço. Cada uma dessas faces é um polígono. Na imagem abaixo, as faces são os triângulos ADE, ABE, DCE e BCE e o quadrilátero ABCD.

Arestas: São os segmentos de reta provenientes do encontro entre duas faces. Uma aresta pertence apenas a duas faces distintas. Na figura abaixo, são os segmentos de reta AB, AD, BC, CD, AE, BE, CE e DE.

Vértices: São os pontos de encontro das arestas. Na figura abaixo, são os pontos A, B, C, D e E.

Ilustração de um poliedro e seus elementos: faces, arestas e vértices
Ilustração de um poliedro e seus elementos: faces, arestas e vértices

Elementos de um Prisma

Prismas são poliedros que possuem duas bases pertencentes a planos distintos e paralelos. Observe a figura abaixo para melhores esclarecimentos sobre os elementos de um prisma.

Não pare agora... Tem mais depois da publicidade ;)
  • Vértices, faces e arestas: São os elementos de qualquer poliedro listados anteriormente.

  • Bases do prisma: Na figura acima, são os pentágonos ASEGH e NOPQR, que pertencem a planos paralelos. Contudo, não é necessário que essas figuras sejam pentágonos. Elas podem ser qualquer polígono.

  • Faces laterais: Polígonos situados “nas laterais” do prisma, isto é, polígonos que não são as bases. No exemplo acima, todos os quadriláteros.

  • Arestas da base: São as arestas ligadas às bases desse prisma. Na figura acima, são os segmentos de reta: AS, SE, EG, GH, HA, NR, RQ, QP, PO e ON.

  • Arestas laterais: São as arestas presentes nas faces laterais do prisma, a saber: os segmentos HO, GP, EQ, SR e AN.

  • Altura do prisma: A menor distância entre os planos que contêm as bases de um prisma é chamada de altura do prisma.

  • Diagonal do prisma: Segmento de reta que liga dois vértices que não pertencem à mesma face. No exemplo, uma dessas diagonais é o segmento de reta pontilhado em vermelho NE.

Elementos de uma pirâmide

Pirâmides são poliedros formados por todos os segmentos de reta que têm início em um polígono e findam em um ponto, que não pertence ao mesmo plano.

  • Vértices, arestas e faces são elementos de qualquer poliedro, inclusive a pirâmide, e já foram definidos acima.

  • Base da pirâmide: Face inferior da pirâmide. Polígono que não pertence ao mesmo plano que o vértice A. No exemplo acima, o polígono BCDEFG.

  • Vértice da pirâmide: Ponto mais “alto” da pirâmide e não pertence ao mesmo plano que a base. No exemplo acima, o vértice da pirâmide é o ponto A.

  • Faces laterais: Exceto pela base, todas as faces de uma pirâmide são laterais. No exemplo acima, as faces laterais são os triângulos.

  • Arestas da base: São as arestas que pertencem à base de uma pirâmide. No exemplo acima, BC, CD, DE, EF, FH e GB.

  • Arestas Laterais: não pertencem à base de uma pirâmide. São eles: AB, AC, AD, AE, AF, AG e AH.

  • Altura: É a distância entre o vértice da pirâmide e o plano que contém sua base.

Os poliedros possuem como elementos: arestas, vértices e faces
Os poliedros possuem como elementos: arestas, vértices e faces
Publicado por: Luiz Paulo Moreira Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

A respeito da definição de poliedros e de sua classificação, assinale a alternativa correta:

a) Os sólidos geométricos que estão dentro do conjunto dos poliedros são prismas, pirâmides e corpos redondos.

b) Os poliedros são objetos tridimensionais, por isso, é possível encontrar neles três medidas ortogonais: comprimento, largura e profundidade.

c) Poliedros são objetos cujas faces são polígonos; corpos redondos são objetos em que todas as faces são planas.

d) Os poliedros são sólidos geométricos espaciais, tridimensionais e formados por faces retangulares.

e) Os poliedros são figuras bidimensionais que podem ser definidas em um plano qualquer.

Questão 2

A respeito dos sólidos geométricos que pertencem ao conjunto formado por todos os poliedros, assinale a alternativa correta.

a) Os corpos redondos são poliedros. O que garante isso é a presença de duas faces planas no cilindro e uma no cone.

b) Um prisma é um tipo de poliedro que possui duas bases poligonais e faces laterais triangulares.

c) Pirâmides são poliedros que possuem uma base poligonal e um vértice da pirâmide oposto a essa base. O número de faces de uma pirâmide sempre é igual ao número de arestas.

d) Prismas e pirâmides são poliedros para os quais sempre vale a relação de Euler.

e) Pirâmides são poliedros que possuem uma base poligonal e faces laterais triangulares.

Mais Questões
Assuntos relacionados
Tubos cilíndricos usados na construção civil
Cilindros
Clique e aprenda o que são cilindros, quais os seus elementos e sua classificação e veja as fórmulas para calcular a área e o volume desses sólidos.
Poliedros são figuras geométricas formadas por planos e possuem como elementos vértices, arestas e faces
Classificação de poliedros
Clique para entender os critérios da classificação dos poliedros!
É possível calcular a medida da diagonal de blocos retangulares
Diagonal do bloco retangular
Clique e aprenda o que é a diagonal do bloco retangular, qual a fórmula para calculá-la e como essa fórmula é encontrada.
Dodecaedro: sólido platônico
Dodecaedro
Confira aqui as características de um dodecaedro e aprenda a calcular sua área e volume.
Polígonos inscritos e circunscritos na circunferência
Elementos do polígono regular inscrito
Clique e aprenda o que são os elementos do polígono regular inscrito em uma circunferência e conheça algumas propriedades básicas deles.
                                  Hexaedro ou cubo
Hexaedro Regular
Confira aqui qual a formação de um hexaedro, aprenda também a calcular seu volume e área.
Cubos: Paralelepípedo de faces quadradas
Paralelepípedos
Clique para descobrir o que são paralelepípedos, as propriedades de suas faces e arestas e algumas das classificações desses sólidos geométricos.
Poliedros
Definição de poliedros, poliedros regulares e fórmula de Euler.
Cinco classes de poliedros regulares
Poliedros regulares
Clique para conhecer as principais características dos poliedros regulares.
Polígono formado por outros polígonos com número de lados em progressão aritmética
Polígonos convexos e regulares
Compreenda a definição de polígonos, bem como todos os pré-requisitos para que eles sejam considerados convexos e regulares.
Polígonos com mesmo formato, mas de tamanhos diferentes
Polígonos semelhantes
Clique para saber mais sobre os polígonos semelhantes e algumas propriedades decorrentes dessa semelhança.
Arestas de um cubo formadas por prismas vermelhos
Prisma
Aprenda o que é prisma, o modo como esse sólido geométrico é definido e algumas das classificações mais importantes que o envolvem.
Os poliedros convexos são aqueles que estão em um mesmo semiespaço, limitados por uma de suas faces
Relação de Euler
Clique e aprenda o que é a relação de Euler e como essa fórmula relaciona o número de faces, arestas e vértices de poliedros convexos.
Sólidos de Platão
Conheça os cinco sólidos de Platão e aprenda a determinar o número de vértices, arestas e faces desses poliedros a partir da relação de Euler.
Sólido de Platão: Tetraedro
Tetraedro Regular
Confira os elementos e principais propriedades do tetraedro.
Dados são hexaedros regulares (cubos)
Área do cubo
Clique para aprender a calcular a área do cubo, bem como sua área lateral e a área de suas bases.