Whatsapp icon Whatsapp

Função constante

Uma função constante é caracterizada por apresentar uma lei de formação f(x) = c, na qual c é um número real.
Confira o que é uma função constante e como é seu gráfico
Confira o que é uma função constante e como é seu gráfico

A função constante diferencia-se das funções do 1° grau por não poder ser caracterizada como crescente ou decrescente, sendo, por isso, constante. Podemos afirmar que uma função constante é definida pela seguinte fórmula:

f(x) = c,  

A representação da relação estabelecida por uma função constante por meio do diagrama de flechas assemelha-se com a representação da imagem a seguir, pois, independentemente dos valores pertences ao domínio, a imagem é sempre composta por um único elemento.

Representação da função constante através do diagrama de flechas
Representação da função constante através do diagrama de flechas

O gráfico da função constante também apresenta uma particularidade em relação às demais funções. Ele é sempre uma reta paralela ou coincidente ao eixo x. Vejamos alguns exemplos de funções constantes e seus respectivos gráficos:

Exemplo 1: f(x) = 2

O gráfico da função f(x) = 2 é uma reta paralela ao eixo x que intercepta o eixo y no ponto (0, 2).

Representação da função constante f(x) = 2
Representação da função constante f(x) = 2

Exemplo 2: f(x) = 0

O gráfico da função f(x) = 0 é uma reta coincidente ao eixo x que intercepta o eixo y na origem.

Não pare agora... Tem mais depois da publicidade ;)

Representação da função constante f(x) = 0
Representação da função constante f(x) = 0

Exemplo 3: f(x) = – 2x – 8
                              
x + 4

Colocando o 2 em evidência no numerador da função, podemos simplificar a função da seguinte forma:

f(x) = – 2x – 8
          x + 4

f(x) = – 2.(x + 4)
           x + 4

f(x) = – 2

Portanto, f(x) é uma função constante cujo gráfico é uma reta paralela ao eixo x que intercepta o eixo y no ponto (0, – 2).

Representação da função constante f(x) = (– 2x – 8)/(x + 4)
Representação da função constante f(x) = (– 2x – 8)/(x + 4)

Exemplo 4: 

Apesar de o gráfico dessa função ser formado por retas paralelas ao eixo x, essa NÃO é uma função constante, pois f(x) apresenta três valores distintos.

Nesse caso, temos uma função que NÃO é constante
Nesse caso, temos uma função que NÃO é constante

Publicado por Amanda Gonçalves Ribeiro

Artigos Relacionados

Analisando Situações Através de Funções do 1º Grau
Aplicações de uma Função do 1º grau.
Confira o que é uma função linear e como é o seu gráfico!
Função Linear
Você sabe o que é uma função linear? Confira esse tipo especial de função afim!
O gráfico da função crescente está inclinado para cima, e o da função descrente está inclinado para baixo
Função crescente e decrescente
Clique para descobrir o que são funções crescentes, decrescentes e constantes, além de obter exemplos de cada uma delas.
Função do 1º grau
Você sabe qual a formação de uma função do 1º grau? Clique aqui e aprenda!
Gráficos de funções são formas de representação.
Função injetora
Classifique uma função como função injetora, e veja alguns exemplos desse tipo de função. Aprenda suas propriedades e reconheça seu gráfico.
Gráfico de uma Função do 1º grau
Representação gráfica de uma função do 1º grau.
O que é função?
Entenda o conceito de função e suas principais características. Aprenda também quais são os principais tipos de função e confira exercícios resolvidos sobre o tema.
Propriedades de uma função
Função, tipos de função, propriedade da função, função bijetora, função sobrejetora, função injetora, características de uma função, características de uma função sobrejetora, características de uma função injetora, características de uma função bijetora.
Relação
Relação, Conjunto, Relação entre conjuntos, Representação de conjunto, Representação de relação, Regra, Diagrama, Par ordenado, Domínio, Imagem, Gráfico de uma relação.
Zero da função do 1º grau
O estudo do zero de uma função do 1º grau consiste em encontrar a raiz da equação do 1º grau que constitui esta função, ou seja, o valor de x que determina o zero da função.
video icon
Filosofia
A condição pós-moderna de Jean-François Lyotard
Jean-François Lyotard é um dos pensadores que se dedicam a entender a complexa condição pós-moderna. Entender a condição do ser humano na pós-modernidade não é tarefa fácil. Essa condição, marcada por estigmas linguísticos, pelo consumo e por um mundo que se viu polarizado durante a Guerra Fria (e cedido ao capitalismo financeiro e ao capitalismo consumista), levou a filosofia a repensar o que estaríamos vivendo.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas.