Whatsapp icon Whatsapp

Determinantes de matrizes de ordem 1, 2 e 3

Para que os determinantes de matrizes de ordem 1, 2 e 3 possam ser calculados, é fundamental conhecer alguns métodos e regras. Entende-se o determinante como um número real que está associado a uma matriz quadrada e esse número é único, ou seja, para cada matriz quadrada de ordem n temos um único número real que se associa a ela. Embora pareça ser um conteúdo muito específico, é importante lembrar que o determinante possui diversas aplicações dentro da matemática, como na determinação da equação da reta, em geometria analítica.

O cálculo de determinante possui diversas aplicações nos diferentes campos da matemática
O cálculo de determinante possui diversas aplicações nos diferentes campos da matemática

Notação para determinantes

Considere uma matriz A quadrada, ou seja, uma matriz que possui o mesmo número de linhas e colunas. O determinante da matriz A é representado por detA ou |A|.

→ Exemplo

Leia mais: Propriedades dos determinantes: quais são e como usar?

Determinante de matriz de ordem 1

O determinante de uma matriz A que possui só um elemento, isto é, A é uma matriz unitária é dado pelo próprio elemento.

 Se A = [a11] então detA  = a11

Exemplos

a) A = [-7] → detA = – 7

b) B = (π) → detB = π

Não pare agora... Tem mais depois da publicidade ;)

Determinante de matriz de ordem 2

O determinante de uma matriz de ordem 2 é calculado fazendo a multiplicação dos elementos da diagonal principal e subtraindo pela multiplicação dos elementos da diagonal secundária.

Exemplos

a) Determine o valor dos determinantes das matrizes A e B.

Portanto, detA = 0 e detB = 1

Veja também: Cálculo da matriz inversa por meio de determinantes

Determinante de matriz de ordem 3

O determinante de ordem 3 é calculado utilizando a regra de Sarrus, que consiste em quatro passos:

Passo 1 – Repetir as duas primeiras colunas ao lado da matriz.

Passo 2 – Multiplicar os elementos da diagonal principal e de suas paralelas que contêm três elementos.

Passo 3 – Multiplicar todos os elementos da diagonal secundária e de suas paralelas que contêm três elementos.

Passo 4 – Somar todos os resultados obtidos pelas multiplicações do sentido da diagonal principal e subtrair os resultados obtidos pelas multiplicações do sentido da diagonal secundária.

Exemplo

Calcule o determinante da matriz A.

 

Passo 1

Passo 2

Passo 3

Passo 4

detA = 45 + 84 + 96 – 72 – 48 – 105

detA = 225 – 225 = 0

Leia mais: Regra de Chió nos cálculos dos determinantes

Exercícios

Questão 1 – ( U. E. Londrina – PR) A soma dos determinantes

a) quaisquer que sejam os valores reais de a e b.

b) se, e somente se, a = b

c) se, e somente se, a = – b

d) se, e somente se, a = 0

e) se, e somente se, a = b = 1

Solução:

Vamos inicialmente determinar cada um dos determinantes. Ambos são de ordem 2, logo, basta multiplicar os elementos da diagonal principal e subtrair esse produto do resultado da multiplicação dos elementos da diagonal secundária.

Como o enunciado fala sobre a soma dos determinantes:

a2 – b2 + (– a2 + b2)

a2 – b2 – a2 + b2

0

Ou seja, para quaisquer valores de a e b, a expressão sempre será igual a zero.

Resposta: Alternativa a

Publicado por Robson Luiz
Assista às nossas videoaulas

Artigos Relacionados

Adição e subtração de matrizes
Saiba como operar duas ou mais matrizes. Veja tudo sobre as operações de adição e subtração de matrizes. Entenda as condições para realizar essas operações.
O determinante é utilizado na resolução de sistemas lineares.
Determinante
Aprenda a calcular o determinante de matrizes de ordem 1, 2 e 3. Conheça a regra de Sarrus, e saiba as propriedades do determinante.
Equivalência de sistemas lineares
Conceituação sobre equivalência de sistemas lineares. Como comparar dois sistemas e concluir que eles são equivalentes.
Matriz inversa
Entenda o que é uma matriz inversa e como encontrá-la. Aprenda a verificar também se uma matriz admite inversa ou não e conheça a matriz identidade de ordem 2 e 3.
Matriz oposta e Matriz Transposta
matriz, Matriz transposta, Matriz Oposta, Oposto de um número, Representação de uma matriz transposta, Matriz simétrica, Representação de uma matriz oposta.
Representação de uma matriz quadrada.
Matriz quadrada
Clique aqui, entenda o que é matriz quadrada, identifique suas diagonais principal e secundária e aprenda como calcular seu determinante.
Matriz A
Matriz simétrica
Entenda o que é uma matriz simétrica bem como a matriz antissimétrica. Confira ainda exemplos e exercícios resolvidos.
As propriedades podem facilitar o cálculo dos determinantes e até dispensar as contas em algumas situações.
Propriedades dos determinantes
Você sabia que existem estratégias que ajudam na hora de calcular o determinante de uma matriz? Confira aqui todas as propriedades dos determinante
A regra de Cramer é utilizada na resolução de sistemas lineares.
Regra de Cramer
Aprenda o que é a regra de Cramer e como utilizá-la para encontrar as soluções de um sistema linear. Confira ainda exemplos e exercícios resolvidos.
Teorema de Binet
A importância do Teorema de Binet para o cálculo de determinantes de matrizes- produto.
video icon
Filosofia
Paulo Freire
Com esta videoaula, você vai saber mais sobre a trajetória de Paulo Freire. Pernambucano, escritor, filósofo e educador, Paulo Reglus Neves Freire nasceu em 19 de setembro de 1921. Reconhecido internacionalmente, premiado e muito citado, ele foi considerado o patrono da educação brasileira.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas