Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Função
  4. Plano cartesiano

Plano cartesiano

O plano cartesiano é formado por duas retas reais perpendiculares, ou seja, o ângulo entre elas é de 90°. Essas retas determinam um único plano, que é denominado com sistema ortogonal de coordenadas cartesianas ou somente plano cartesiano.

No ano de 1637, René Descartes teve a brilhante ideia de relacionar álgebra e geometria, dando início à conhecida geometria analítica, método que possibilita descrever a geometria utilizando uma menor quantidade de diagramas e desenhos. Apesar de os créditos dessa descoberta serem dados a Descartes, Pierre de Fermat já conhecia e utilizava alguns conceitos de geometria analítica, logo o plano cartesiano.

Veja também: Ângulos formados entre duas retas

Para que serve um plano cartesiano?

Plano cartesiano formado pelos eixos x e y.
Plano cartesiano formado pelos eixos x e y.

O plano cartesiano é um sistema de coordenadas desenvolvido por René Descartes. Esse sistema de coordenadas é formado por duas retas perpendiculares, chamadas de eixos cartesianos. Esses eixos determinam um único plano, assim, é possível determinar a localização no sistema de coordenadas de todo os pontos e, consequentemente, de qualquer objeto formado por esses pontos que estejam nesse plano.

Desse modo, perceba que é possível representar pontos ou objetos utilizando somente suas coordenadas, isto é, não é necessário construir um desenho de um objeto, basta somente expressar suas coordenadas.

Muitos problemas da Matemática só puderam ser resolvidos graças a essa concepção, como para calcular a distância entre dois pontos ou calcular a área de um triângulo. Esses assuntos são a base da geometria analítica, que é, por sua vez, a base para desenvolver o cálculo diferencial e integral.

Não pare agora... Tem mais depois da publicidade ;)

Como se faz um plano cartesiano?

O plano cartesiano é formado por duas retas reais em que o ângulo entre elas é de 90°, ou seja, elas são perpendiculares. Essas retas são chamadas de eixos. Assim, há o eixo horizontal, que é chamado de eixo das abscissas, e o eixo vertical, que é o eixo das ordenadas.

Perceba que as retas perpendiculares dividem o plano em quatro regiões, que são chamadas de quadrantes – isso porque as duas retas perpendiculares dividem o plano em quatro regiões.

Vamos representar os quadrantes no sentido anti-horário. Veja:

Note as relações entre os valores dos eixos x (abscissas) e y (ordenadas). No 2º quadrante, o valor da abscissa é sempre menor que o valor da ordenada, ou seja, x < y. No 4º quadrante, o valor da abscissa é sempre maior que o valor da ordenada, assim, x > y.

Nos quadrantes ímpares, 1º e 3º, já não podemos afirmar alguma relação, pois neles podemos ter abscissas maiores, menores ou iguais aos valores das ordenadas.

Leia também: Demonstração das fórmulas das coordenadas do vértice

Ponto em um plano cartesiano

Um ponto qualquer do plano cartesiano é indicado a partir de suas coordenadas, que são representadas por um par ordenado, ou seja, um ponto é formado por um conjunto de dois números que possui uma ordem a ser seguida (ordenado). A notação do par ordenado ou ponto P é:

P (x, y)

x à Abscissa

y → à Ordenada

Assim, para localizar um ponto, basta marcar o valor no eixo das abscissas e, em seguida, o valor no eixo das ordenadas. Depois trace uma reta perpendicular aos pontos x e y encontrados. O local onde essas retas perpendiculares se encontram é onde ponto P está.

Exercícios resolvidos

Questão 1 – Marque os pontos A (2, 3), B (-2,5), C (-3, -2) e D (1, -4) no plano cartesiano.

Solução

Questão 2 – Em um ponto Q (a, b) do plano cartesiano, a abscissa é menor que a ordenada, assim, em que quadrante esse ponto não pode estar?

Solução

Do enunciado, temos que o valor da abscissa é menor que o da ordenada, ou seja:

a < b

O único quadrante em que o ponto Q não pode estar é no quarto, visto que o valor da abscissa é sempre maior que o valor da ordenada.

Publicado por: Robson Luiz
Assista às nossas videoaulas
Assuntos relacionados
Relação
Relação, Conjunto, Relação entre conjuntos, Representação de conjunto, Representação de relação, Regra, Diagrama, Par ordenado, Domínio, Imagem, Gráfico de uma relação.
Função exponencial
Definição e propriedades da função exponencial.
Gráfico da Função Lucro
Analisando o gráfico da função lucro.
Problemas Envolvendo Funções do 1º Grau
Funções Matemáticas aplicadas a situações cotidianas.
Produto Cartesiano
Obtendo os pares ordenados do produto entre conjuntos.
Áreas de Regiões Curvas
Você sabe o que são áreas de regiões curvas? Clique aqui e entenda!
Confira o que é uma função linear e como é o seu gráfico!
Função Linear
Você sabe o que é uma função linear? Confira esse tipo especial de função afim!
Planos paralelos e perpendiculares formando um cubo
Posição relativa entre planos
Aprenda as posições relativas entre dois planos no espaço e o resultado da interação entre eles: com pontos ou não na intersecção.
A superfície da mesa representa parte de um plano
O que é plano?
Clique e aprenda o que é um plano, os postulados que garantem sua existência e como construí-los.
Ferramentas usadas para medir e construir ângulos no círculo trigonométrico
Círculo trigonométrico
Clique para aprender o que é um círculo trigonométrico, como construí-lo e o modo como o seno e o cosseno são marcados sobre ele.
Curva que representa uma função exponencial crescente
Gráfico da função exponencial
Clique e aprenda a construir o gráfico de uma função exponencial e conheça também as propriedades dessa representação matemática.
Secante, cossecante e cotangente são razões relacionadas ao ciclo trigonométrico
Secante, cossecante e cotangente
Clique para descobrir o que são as razões secante, cossecante e cotangente e quais são suas relações com seno, cosseno e tangente.
Por meio das relações fundamentais da Trigonometria, é possível relacionar as razões trigonométricas
Segunda relação fundamental da Trigonometria
Clique e descubra qual é a segunda relação fundamental da Trigonometria e entenda como esse teorema associa as razões trigonométricas básicas.
Seno e cosseno são duas das razões trigonométricas que podem aparecer em inequações
Inequações trigonométricas: cosx < k
Clique e aprenda a resolver inequações trigonométricas do tipo cosx < k e conheça os fundamentos para essa resolução.
Toda inequação trigonométrica pode ser reduzida a uma inequação e utilizar o ciclo trigonométrico na resolução
Inequações trigonométricas: tgx > k
Clique para aprender a solucionar uma das inequações trigonométricas, tgx > k, por meio do ciclo trigonométrico e da fórmula obtida a partir dele.
É possível solucionar inequações trigonométricas com o auxílio do ciclo trigonométrico
Inequações trigonométricas: senx > k
Clique e descubra como resolver, com o uso do ciclo trigonométrico, senx > k, uma das inequações trigonométricas.
As parábolas são figuras cuja distância de um de seus pontos até o foco é igual à distância desse mesmo ponto até a diretriz
Parábolas
Clique e aprenda o que são parábolas para a Geometria Analítica, conheça seus elementos e saiba encontrar as equações reduzidas dessa figura.
A geometria analítica estuda a geometria por meio de processos algébricos
O que é geometria analítica?
Descubra o que é geometria analítica e entenda como os processos algébricos são utilizados nessa disciplina para estudar a geometria.
Por meio dos pares e ternos ordenados, é possível localizar objetos no espaço
Pares e ternos ordenados
Clique para aprender o que são pares e ternos ordenados e saiba como esses conjuntos numéricos podem ser usados para definir localizações no espaço.
A quantidade de dimensões define e diferencia as figuras planas e espaciais
Diferenças entre figuras planas e espaciais
Clique para aprender as maiores diferenças entre figuras planas e espaciais, como a quantidade de dimensões que as define.
Cônicas: intersecções entre um plano e um cone
Cônicas
Aprenda o que são cônicas, figuras geométricas formadas pela intersecção de um plano com um cone de revolução. Descubra também quais são as figuras elipse, hipérbole e parábola. Conheça ainda as equações reduzidas de cada uma das cônicas nos casos em que os focos estejam sobre o eixo x ou no eixo y.
Representação geométrica da adição de números complexos
Representação geométrica da adição de números complexos
Acesse este texto e aprenda a determinar o resultado da adição de números complexos por meio de sua representação geométrica no plano de Argand-Gauss. Relembre ainda como se realiza a soma de números complexos de maneira algébrica e como esses números podem ser representados no plano, por meio de vetores.
Retas perpendiculares
coeficiente angular, Retas perpendiculares, coeficiente angular de retas perpendiculares, condição de existência de retas perpendiculares, tangente, ângulo de inclinação.