Posição relativa entre reta e plano

A posição relativa entre reta e plano é determinada pela análise das relações entre esses dois objetos matemáticos no espaço.

Dois objetos matemáticos de qualquer natureza podem relacionar-se de diferentes formas. Quando estão no espaço, a quantidade de pontos de encontro entre eles e o modo como estão dispostos é o que chamamos de posição relativa. Quando esses objetos são uma reta e um plano, a análise de suas posições, tomando um dos dois como referência, é o que chamamos de posição relativa entre reta e plano.

Não pare agora... Tem mais depois da publicidade ;)

Tanto reta quanto plano são objetos primitivos. Isso porque não é possível defini-los de forma satisfatória: sabemos que eles existem e imaginamos seus formatos. Assim, reta é um conjunto de pontos (outro objeto de noção primitiva) no plano, e plano é um conjunto de retas ou de pontos no espaço.

Planos e retas paralelos

Dizemos que uma reta é paralela a um plano quando não existe ponto de encontro entre os dois. A representação dessa situação é dada por uma parte do plano e da reta, uma vez que ambos são infinitos.

Exemplo de reta paralela ao plano
Exemplo de reta paralela ao plano

Um resultado importante que pode ser extraído dessa definição é o seguinte: Se uma reta r é paralela a uma reta s e a reta s está totalmente contida em um plano, então, esse plano é paralelo à reta r.

Não pare agora... Tem mais depois da publicidade ;)

Planos e retas concorrentes

Dizemos que uma reta é concorrente ou secante a um plano quando existe apenas um ponto de intersecção, isto é, quando a reta toca o plano em apenas um ponto.

Reta e plano que possuem apenas um ponto em comum
Reta e plano que possuem apenas um ponto em comum

Tomando uma reta concorrente a um plano que o toca no ponto L, dizemos que a reta é perpendicular ao plano se for perpendicular a todas as retas desse plano que passam por L.

Exemplo de reta perpendicular a todas as retas que passam pelo ponto L
Exemplo de reta perpendicular a todas as retas que passam pelo ponto L

Plano que contém a reta

Dizemos que o plano contém a reta ou que a reta está contida no plano quando todos os pontos da reta também são pontos desse plano.

Exemplo de reta em que todos os pontos pertencem a um plano
Exemplo de reta em que todos os pontos pertencem a um plano

Análise da posição ocupada pela reta em comparação com algum plano
Análise da posição ocupada pela reta em comparação com algum plano
Escrito por: Luiz Paulo Moreira Silva Escritor oficial Mundo Educação.

Videoaulas

Artigos Relacionados

Axiomas e Postulados
Ponto, Reta, Plano, Axiomas, Postulados, Dois pontos formam uma reta, Em um ponto passam infinitas retas, Cadeira tripé, Relação de pertinência, Relação de inclusão, Semi-reta
Conhecendo os Elementos de um Polígono
Clique aqui e aprenda a identificar quais são os elementos de um polígono!
Perpendicularidade
Posições relativas, Posição relativa entre duas retas, Retas paralelas, Retas coincidentes, Reta paralela ao plano, Reta contida no plano, Retas e planos secantes ou concorrentes, Planos paralelos, Planos secantes, Planos coincidentes, perpendicularidade entre retas e planos.
Posições relativas
As posições relativas correspondem a posições entre retas e planos no espaço. Saiba mais aqui!
Posições relativas de duas retas
Retas, retas paralelas, retas concorrentes, o que são retas paralelas, o que são retas concorrentes, Posições relativas de duas retas, coeficiente angular de retas paralelas, coeficiente angular de retas concorrentes.
Retas
Confira as principais ideias que envolvem retas e algumas propriedades básicas dessa figura geométrica!
Retas perpendiculares
Clique aqui para entender o que são retas perpendiculares. Saiba como identificar duas retas perpendiculares a partir de suas equações reduzidas.
Área do triângulo retângulo
Clique aqui, saiba qual é a fórmula para calcular a área do triângulo retângulo e veja como calculá-la.