Whatsapp icon Whatsapp

Soma dos ângulos externos de um polígono

A soma dos ângulos externos de um polígono convexo sempre deve ser igual a 360°. Esse resultado não depende da quantidade e da medida de lados e ângulos desse figura.
Ângulos externos de um hexágono regular
Ângulos externos de um hexágono regular

Entre os elementos de um polígono, estão os lados, vértices, ângulos internos e ângulos externos. Quando o polígono é convexo, também podemos pensar nas suas diagonais e criar propriedades como a soma de seus ângulos internos e a soma de seus ângulos externos. Essa última propriedade deve sempre ser igual a 360°, em todo polígono convexo. Isso é resultado da definição dos ângulos externos, aliada a algumas propriedades envolvendo ângulos que serão discutidas mais adiante.

A soma dos ângulos internos varia de polígono a polígono, dependendo de seu número de lados. Assim, desde que convexos, os polígonos:

a) Que possuem três lados têm soma dos ângulos internos igual a 180°;

b) Que possuem quatro lados têm a soma dos ângulos internos igual a 360°;

c) Que possuem n lados têm a soma dos ângulos internos igual a (n – 2)180.

Definição de ângulo externo

Um ângulo externo é a abertura entre o prolongamento de um lado de um polígono e o lado adjacente a ele. Observe, por exemplo, os ângulos externos da figura a seguir:

Os ângulos assinalados com as letras gregas α, β, γ, δ e ε são externos, pois representam justamente a abertura entre um lado do polígono e o prolongamento do lado adjacente a ele.

Propriedades relacionando ângulos externos e ângulos internos

Perceba que sempre existe um ângulo interno que compartilha um lado de um polígono com um ângulo externo. Observe também que esses dois ângulos estão sempre sobre a mesma reta, já que o ângulo externo depende do prolongamento do lado do polígono. Dessa forma, garantimos que a soma de um ângulo interno com o ângulo externo adjacente a ele é igual a 180°. Em outras palavras:

Não pare agora... Tem mais depois da publicidade ;)

Um ângulo interno e o ângulo externo adjacente a ele sempre são suplementares.

 

No pentágono regular acima, temos um ângulo interno e um externo. Como o pentágono é regular, cada um de seus ângulos internos mede 108°. Assim sendo, cada um de seus ângulos externos medirá 72°.

Observe que existem exatos cinco ângulos externos nesse polígono, e que todos medem 72° porque o polígono é regular.

5·72 = 360°

Demonstração

Independentemente de qual seja o polígono convexo e sua quantidade de lados, ou do fato de todos os lados possuírem medidas diferentes, cada ângulo interno (Si), somado ao seu ângulo externo adjacente (Ai), deve ter como resultado 180°:

Si + Ai = 180°

Seja S a soma de todos os ângulos internos e A a soma de todos os ângulos externos, em um polígono de n lados, temos também n ângulos internos e n ângulos externos. Assim:

S + A = 180·n

A soma dos ângulos internos nós já conhecemos, pois ela é obtida pela expressão: S = (n – 2)180. Substituindo S por essa expressão na equação anterior, temos:

S + A = 180n

(n – 2)180 + A = 180n

180n – 360 + A = 180n

Como queremos descobrir a soma dos ângulos externos de um polígono, isolaremos a incógnita A no primeiro membro:

180n – 360 + A = 180n

A = 180n + 360 – 180n

A = 360°

Portanto, fica demonstrado que a soma dos ângulos externos de um polígono convexo é sempre igual a 360°.

Publicado por Luiz Paulo Moreira Silva
Assista às nossas videoaulas

Artigos Relacionados

Conhecendo os Elementos de um Polígono
Clique aqui e aprenda a identificar quais são os elementos de um polígono!
Retas
Confira as principais ideias que envolvem retas e algumas propriedades básicas dessa figura geométrica!
Soma dos Ângulos Internos de um Polígono Regular
Polígonos: ângulos internos, ângulos externos, soma de ângulos.
Soma dos ângulos internos de um triângulo
Clique para entender a soma dos ângulos internos de um triângulo e para obter exemplos dessa soma e a demonstração desse resultado.
Ângulos
Aprenda o que são ângulos. Conheça suas classificações e saiba como medi-los. Entenda o que são ângulos congruentes e outros conceitos.
Ângulos complementares e suplementares
Aprenda o que são ângulos complementares e suplementares e veja alguns exemplos e definições importantes que envolvem esses conceitos.
video icon
Escrito"Função Seno com Geogebra" sobre fundo bege e amarelo.
Matemática
Função Seno com Geogebra
Nesta aula utilizaremos o software gratuito geogebra para mostrar as possíveis variações da função seno. Analisaremos o eixo central, a amplitude, o máximo e mínimo, a imagem e o período da função seno.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.