Equação de Bernoulli

A equação de Bernoulli é a representação matemática do princípio de Bernoulli, sendo aplicada apenas em fluidos ideais.
Na construção aerodinâmica dos aviões, leva-se em consideração a equação de Bernoulli.

A equação de Bernoulli é uma equação matemática que representa o princípio de Bernoulli e que é válida somente para fluidos ideais — incompressíveis, não viscosos, com escoamento ao longo de uma linha de corrente. Ela demonstra que, quando a velocidade do fluido decresce, a sua pressão cresce.

Leia também: Equação da continuidade — equação matemática que relaciona a área disponível para o escoamento de um fluido e a sua velocidade

Resumo sobre equação de Bernoulli

  • A equação de Bernoulli é a representação matemática do princípio de Bernoulli, sendo aplicada apenas em fluidos ideais.
  • O princípio de Bernoulli diz que, em fluidos ideais, à medida que a velocidade do fluido aumenta, a sua pressão diminui e vice-versa.
  • Um fluido ideal é não viscoso, tem escoamento permanente e ocorre ao longo de uma linha de corrente.
  • A equação de Bernoulli aborda a relação da pressão e velocidade em diferentes pontos de um fluido.
  • É usada na fabricação de vaporizadores, tubos de pitot e tubos de venturi.

O que é a equação de Bernoulli?

A equação de Bernoulli é a equação matemática que representa o princípio de Bernoulli. Ela se origina da lei da conservação da energia mecânica aplicada ao escoamento dos fluidos ideais.

Princípio de Bernoulli

O princípio de Bernoulli é o princípio representado pela equação de Bernoulli. Esse princípio diz que, em fluidos ideais, à medida que a velocidade do fluido aumenta, a sua pressão diminui e vice-versa. Para que um fluido seja ideal, ele precisa:

  • Ser invíscido: sem a atuação de forças viscosas sobre ele.
  • Ter escoamento permanente (incompressível): suas características, como massa específica e volume, não se alteram com o tempo.
  • Ocorrer ao longo de uma linha de corrente (linha de trajetória de uma molécula do fluido).
Representação do princípio de Bernoulli.

Veja também: Princípio de Pascal — princípio que afirma que a pressão em um ponto do fluido é propagada igualmente por todos os seus pontos

Fórmulas da equação de Bernoulli

 → pressão do fluido no ponto 1, medida em Pascal [].

 → pressão do fluido no ponto 2, medida em Pascal [].

 → velocidade do fluido no ponto 1, medida em metros por segundo [].

 → velocidade do fluido no ponto 2, medida em metros por segundo [].

 → altura do fluido no ponto 1, medida em metros [].

 → altura do fluido no ponto 2, medida em metros [].

 → massa específica, medida em [].

 → aceleração da gravidade, mede aproximadamente .

Também pode ser escrita como:

  •  → pressão do fluido no ponto 1, medida em Pascal [].

  •  → pressão do fluido no ponto 2, medida em Pascal [].

  •  → velocidade do fluido no ponto 1, medida em metros por segundo [].

  •  → velocidade do fluido no ponto 2, medida em metros por segundo [].

  •  → altura do fluido no ponto 1, medida em metros [].

  •  → altura do fluido no ponto 2, medida em metros [].

  •  → peso específico, medido em [].

  •  → aceleração da gravidade, mede aproximadamente .

Exemplo:

No ponto 1 de uma mangueira a 8 m do chão, o fluido se move com velocidade de 3 m/s e sofre uma pressão de 12 kPa. Já no ponto 2, a 2 m do chão, o fluido se move com velocidade de 10 m/s e sofre uma pressão . Com base nessas informações, calcule a pressão .

Considere:  e .

Resolução:

Calcularemos a pressão no ponto 2 desse fluido por meio da equação de Bernoulli:

A pressão no ponto 2 é de .

Aplicações da equação de Bernoulli

A equação de Bernoulli é frequentemente empregada na física e na engenharia, sendo utilizada no desenvolvimento de vaporizadores; de tubos de pitot, usados nas aeronaves e na hidráulica; de tubos de venturi, para medir vazão, entre outros.

Exercícios resolvidos sobre equação de Bernoulli

Questão 1

A água sai de uma mangueira, posicionada a 1,5 m de altura, com velocidade de 5 m/s. Sabendo que, na parte que está posicionada ao chão, a velocidade era de 2 m/s, calcule a pressão nesse ponto.

Dados:  e .

A)

B)

C)

D)

E)

Resolução:

Alternativa E

Calcularemos a pressão inicial desse fluido por meio da equação de Bernoulli:

Consideraremos o ponto 1 como sendo o ponto que antecede a saída da água e o ponto 2 como o ponto de saída da água. No ponto 1, a altura é nula, já que ela está posicionada ao chão, e no ponto 2, consideraremos a pressão nula, já que ela é a pressão atmosférica e não nos foi informada.

Questão 2

Um estudante decidiu calcular a velocidade da água no ponto 2 em uma tubulação, que, nesse ponto, está a 1 m de altura e tem uma pressão de 3000 Pa. Sabendo que, no ponto 1, a 3 m de altura, a velocidade da água era de 1 m/s e a pressão era de 10.000 Pa, calcule a velocidade aproximada da água no ponto 2.

Dados: e.

A)

B)

C)

D)

E)

Resolução:

Alternativa B

Calcularemos a velocidade do fluido no ponto 2 por meio da equação de Bernoulli:

Fontes

HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos da Física: Gravitação, Ondas e Termodinâmica (vol. 2). 8. ed. Rio de Janeiro, RJ: LTC, 2009.

NUSSENZVEIG, Herch Moysés. Curso de física básica: Fluidos, Oscilações e Ondas, Calor (vol. 2). 5. ed. São Paulo: Editora Blucher, 2015.

Publicado por Pâmella Raphaella Melo
Inglês
Como usar whatever, whenever, whoever, however, whichever?
Assista à videoaula e aprenda sobre as palavras whatever, whenever, whoever, however e whichever. Entenda como são formadas, o que indicam e como usá-las.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos