Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria
  4. Ângulos alternos internos e externos

Ângulos alternos internos e externos

Em uma reta transversal a duas retas paralelas, os ângulos alternos internos possuem posição alternada na região interna, e os externos, na região externa.

Ângulo é a medida da abertura entre duas semirretas. Essa medida também pode ser observada entre retas, entretanto, a intersecção entre duas retas gera quatro ângulos em vez de um só. Quando duas retas paralelas são cortadas por uma reta transversal, são formados oito ângulos que possuem propriedades e características comuns à posição que ocupam.

Retas paralelas – região interna e externa

Duas retas r e s são chamadas de paralelas quando não possuem nenhum ponto em comum. Para representar o paralelismo, podemos escrever apenas: r\\s.

A região que fica entre as duas retas paralelas, colorida na figura abaixo, é a região interna dessas duas retas.

Região interna das retas paralelas r e s
Região interna das retas paralelas r e s

Já a região que não fica entre as duas retas é chamada de região externa. Observe na imagem a seguir todos os ângulos formados por uma retra transversal a r\\s e que estão na região externa dessas retas.

Ângulos alternos internos

O nome já indica a posição ocupada por ângulos alternos internos. A palavra interno indica que esses ângulos estão na região interna das retas paralelas, e a palavra alterno indica que eles estão em posições alternadas com relação à reta transversal. Sendo assim, ângulos alternos internos são aqueles que estão na região interna das retas paralelas e em lados alternados da reta transversal.

Não pare agora... Tem mais depois da publicidade ;)

Observe na figura a seguir que os ângulos α e β estão na região interna das retas r e s. Ao mesmo tempo, o ângulo α está à direita e o ângulo β está à esquerda da reta transversal.

Assim, podemos dizer que α e β são alternos internos.

Ângulos alternos externos

Ocupam a região externa das retas paralelas e, ao mesmo tempo, estão em lados opostos da reta transversal. Observe um exemplo de ângulos alternos externos na figura a seguir.

É válido destacar que os ângulos alternos externos e internos são congruentes.

Exemplos

Calcule a medida dos ângulos em destaque na figura a seguir.

Solução:

Sabendo que ângulos alternos internos são iguais, podemos escrever a seguinte equação:

8x – 60 = 4x + 20

8x – 4x = 20 + 60

4x = 80

x = 80
      4

x = 20

Para calcular os valores dos ângulos, basta substituir x na expressão dada para cada um deles. Observe:

8x – 60 =

8·20 – 60 =

160 – 60 =

100°

4x + 20 =

4·20 + 20 =

80 + 20 =

100°

Ângulos alternos internos ocupam posições alternadas no interior de retas paralelas
Ângulos alternos internos ocupam posições alternadas no interior de retas paralelas
Publicado por: Luiz Paulo Moreira Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

A respeito das propriedades dos ângulos alternos internos e externos, assinale a alternativa correta:

a) Ângulos alternos internos são adjacentes.

b) Ângulos alternos internos são suplementares.

c) Ângulos adjacentes são congruentes.

d) Ângulos alternos externos são suplementares.

e) Ângulos alternos externos são congruentes.

Questão 2

Dadas as retas paralelas cortadas por uma transversal a seguir, calcule os valores dos ângulos a e b.

Ângulos alternos externos: Questão 2

a) a = 60° e b = 120°

b) b = 60° e a = 120°

c) a = 60° e b = 60°

d) a = 120° e b = 120°

e) a = 90° e b = 90°

Mais Questões
Assuntos relacionados
Condição de existência de um triângulo
Condição de existência de um triângulo, como identificar a existência de um triângulo, triângulo, aplicação da condição de existência de um triângulo, como construir um triângulo.
Duas Retas Paralelas Cortadas por uma Transversal
Determinação de ângulos com base na semelhança de triângulos.
Segmentos de reta paralelos nos trilhos de um trem
Paralelismo
Clique para aprender o que é paralelismo e as propriedades mais importantes relacionadas com essa posição relativa entre retas e planos.
Planos paralelos e perpendiculares formando um cubo
Posição relativa entre planos
Aprenda as posições relativas entre dois planos no espaço e o resultado da interação entre eles: com pontos ou não na intersecção.
Posições relativas
As posições relativas correspondem a posições entre retas e planos no espaço. Saiba mais aqui!
Posições relativas de duas retas
Retas, retas paralelas, retas concorrentes, o que são retas paralelas, o que são retas concorrentes, Posições relativas de duas retas, coeficiente angular de retas paralelas, coeficiente angular de retas concorrentes.
Todas as posições relativas entre reta e plano presentes na mesma ilustração
Posições relativas entre reta e plano
Clique para aprender o que são retas contidas no plano, secantes ou paralelas a ele: as chamadas posições relativas entre reta e plano.
Segmento de reta que começa em A e vai até B
Retas
Confira as principais ideias que envolvem retas e algumas propriedades básicas dessa figura geométrica!
Ângulos notáveis e alguns instrumentos que os representam
Ângulos
Clique para aprender o que são ângulos, como medi-los e algumas características dos ângulos notáveis.
Transferidor e alguns exemplos de ângulos
Ângulos complementares e suplementares
Aprenda o que são ângulos complementares e suplementares e veja alguns exemplos e definições importantes que envolvem esses conceitos.
Ângulos no círculo
Clique aqui e conheça as características e propriedades dos ângulos no círculo!