Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Equação
  4. Fórmula de Bhaskara

Fórmula de Bhaskara

A fórmula de Bhaskara é um método resolutivo para encontrar raízes de uma equação do segundo grau.

A fórmula de Bhaskara é um método resolutivo para equações do segundo grau que permite determinar as soluções desse tipo de equação a partir de seus coeficientes. De posse desses coeficientes, basta substituí-los na fórmula de Bhaskara e realizar as operações matemáticas indicadas por ela para encontrar os valores de x da equação.

O que é uma equação do segundo grau?

Equações do segundo grau são equações definidas por polinômios de grau 2. Isso significa que, entre todas as incógnitas desse polinômio, pelo menos uma será elevada ao quadrado. Toda equação do segundo grau, em sua forma normal, estará escrita da seguinte maneira:

Equação normal do segundo grau
Equação normal do segundo grau

As letras “a”, “b” e “c” representam números conhecidos na equação. Esses números são seus coeficientes. Na equação do segundo grau 2x2 – 5x + 7 = 0, por exemplo, a = 2, b = – 5 e c = 7

O método resolutivo de Bhaskara

A fórmula de Bhaskara foi criada a partir do método de completar quadrados. Seguindo esse método para os coeficientes genéricos “a”, “b” e “c”, obtém-se a seguinte expressão:

Contudo, por questões didáticas, essa fórmula é ensinada em duas etapas: fórmula do discriminante e fórmula de Bhaskara.

Discriminante

A fórmula do discriminante é definida pela expressão no interior da raiz quadrada na fórmula de Bhaskara em sua forma original. O discriminante é representado pela letra grega Δ (delta) e é definido da seguinte maneira:

Δ = b2 – 4ac
Fórmula utilizada para calcular o discriminante de uma equação do segundo grau

O valor de Δ é chamado de discriminante porque é possível extrair algumas informações a respeito de uma equação do segundo grau a partir dele. Portanto, pode-se dizer que Δ discrimina ou classifica equações do segundo grau da seguinte maneira:

Se Δ < 0, a equação do segundo grau não possui raízes reais;

Não pare agora... Tem mais depois da publicidade ;)

Se Δ = 0, a equação do segundo grau possui uma raiz real;

Se Δ > 0, a equação do segundo grau possui duas raízes reais.

Em todo caso, toda equação do segundo grau possui duas raízes, contudo, nem sempre essas raízes são números reais (algumas vezes, elas podem ser números complexos).

Para calcular o valor numérico de Δ, basta substituir os coeficientes da equação do segundo grau na fórmula do discriminante e realizar as operações matemáticas indicadas. Por exemplo: qual é o valor de Δ na equação x2 + 8x – 9 = 0?

Δ = b2 – 4ac

Δ = 82 – 4·1·(– 9)

Δ = 64 + 36

Δ = 100

A fórmula de Bhaskara

De posse do valor numérico de Δ, basta utilizar a fórmula de Bhaskara para encontrar os resultados (ou raízes) da equação do segundo grau.

Para utilizá-la, basta substituir coeficientes e valor de Δ na fórmula acima e realizar as operações indicadas. Contudo, observe a existência do símbolo “±”. Esse símbolo indica que essa fórmula deve ser calculada uma vez para +√Δ e uma segunda vez para –√Δ.

Por exemplo: Quais são as raízes da equação do segundo grau x2 + 8x – 9 = 0?

Nessa equação, a = 1, b = 8, c = – 9 e Δ = 100. Substituindo esses valores na fórmula de Bhaskara, obtemos:

x = – b ± √Δ
      2a

x = – 8 ± √100
      2·1

x = – 8 ± 10
      2

x' = – 8 + 10
      2

x' = 2
      2

x' = 1

x'' = – 8 – 10
       2

x'' = – 18
       2

x'' = – 9

Portanto, as duas raízes da equação do segundo grau x2 + 8x – 9 = 0 são x' = 1 e x'' = – 9.

As equações do segundo grau podem ser resolvidas por meio da fórmula de Bhaskara
As equações do segundo grau podem ser resolvidas por meio da fórmula de Bhaskara
Publicado por: Luiz Paulo Moreira Silva
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Assista às nossas videoaulas
Lista de Exercícios

Questão 1

Qual é o conjunto solução da equação do segundo grau x2 – 16?

a) S = {4, - 3}

b) S = {3, - 4}

c) S = {4, - 4}

d) S = {0, 4}

e) S = {- 4, 0}

Questão 2

Um terreno mede 91 m2 de área. Sabendo que seu comprimento é 6 metros maior que sua largura, quais são as medidas do comprimento e da largura desse terreno?

a) 7 m e 14 m

b) 6 m e 13 m

c) 7 m e 13 m

d) 7 m e – 13 m

e) 7 m e 7 m

Mais Questões
Assuntos relacionados
Separamos para você as principais fórmulas que devem ser estudadas para fazer o Enem
Fórmulas de Matemática decisivas para o Enem
Clique para conferir algumas das fórmulas mais recorrentes no Enem e que são decisivas para a sua aprovação!
A relação entre segmentos secantes na circunferência e triângulos formados por eles é de proporcionalidade
Relação entre segmentos secantes na circunferência
Clique e aprenda qual é a relação existente entre dois segmentos secantes na circunferência e obtenha exemplos dos cálculos desse conteúdo.
 Representação da fórmula de Bhaskara como é ensinada do ensino fundamental
Demonstração da fórmula de Bhaskara
Conheça a demonstração da fórmula de Bhaskara que utiliza outro método para resolver equações do segundo grau.
Equação do primeiro grau com uma incógnita
Equação do primeiro grau com uma incógnita
Aprenda o que são equações do primeiro grau com uma incógnita e conheça algumas formas de resolvê-las
A fórmula de Bháskara é uma das formas que podem ser usadas para resolver equações do segundo grau
Equações incompletas do segundo grau com B = 0
Clique e aprenda duas formas distintas de resolver equações incompletas do segundo grau com b = 0 que podem agilizar e facilitar seus cálculos.
O discriminante de uma equação do segundo grau tem algumas funções na fórmula de Bháskara
Discriminante de uma equação do segundo grau
Clique e aprenda o que é o discriminante da equação do segundo grau e conheça alguns usos desse elemento da fórmula de Bháskara.
O vértice é o ponto mais alto de uma parábola com concavidade voltada para baixo
Demonstração das fórmulas das coordenadas do vértice
Aprenda as fórmulas usadas para encontrar as coordenadas do vértice de uma parábola. Conheça também uma demonstração dessas fórmulas baseada nas raízes da função do segundo grau. Veja ainda um segundo método para determinar as coordenadas do vértice, que pode ser o ponto mais alto ou mais baixo de uma parábola.
Média geométrica
Saiba como calcular a média geométrica e veja suas aplicações! Saiba também a diferença entre a média geométrica e média aritmética.
Definição de equação do 1º grau
Saiba como resolver uma equação do 1º grau.
Equação biquadrada
Equação, equação do segundo grau, Equação biquadrada, Forma geral da equação biquadrada, Raízes da equação biquadrada, Incógnita, Substituição de incógnitas.
As equações do segundo grau podem ser resolvidas por Bháskara ou por formas alternativas
Equações incompletas do segundo grau
Clique para aprender o que são equações incompletas do segundo grau e conheça maneiras alternativas de resolvê-las.
Equação do 2º Grau
Teorema de Bháskara: fórmula resolutiva de uma equação do 2º grau.
Condições de uma Inequação do 2º grau
Estudo de Inequações do 2º grau.
Condições de existência de uma equação do 2º grau através de restrições
Clique aqui e conheça as condições de existência de uma equação através de restrições.
Elementos de uma equação
A relação das grandezas na matemática por meio da equação. Ferramenta da matemática usada para determinar valores desconhecidos através de operações aritméticas.