Whatsapp icon Whatsapp

Números triangulares

Números triangulares pertencem ao conjunto dos naturais e podem ser representados na forma de triângulos.
Número triangular 10, representado pela sequência 1 a 4 nas faces frontais dos dados
Número triangular 10, representado pela sequência 1 a 4 nas faces frontais dos dados

Os números triangulares pertencem ao conjunto dos números naturais e podem ser representados na forma de um triângulo equilátero. Para isso, no lugar de representar os números por algarismos, usam-se unidades. Por exemplo, três pontos não colineares e que possuem a mesma distância, dois a dois, podem ser vistos como vértices de um triângulo equilátero:

 

Triângulo equilátero formado por três unidades
Triângulo equilátero formado por três unidades

Assim, o número 3 é considerado um número triangular.

Sequência de números triangulares

O primeiro número triangular é 1. Isso acontece porque as fórmulas usadas para determinar números triangulares também funcionam para o 1 e não existe restrição que o exclua desse conjunto. Como não é possível construir um triângulo com dois pontos, o próximo número triangular é 3. Pelo mesmo motivo, o número triangular seguinte é 6 e o próximo é 10, como mostra a imagem abaixo.

Sequência de números triangulares

Observe que, para conseguir o primeiro número triangular, usamos apenas um ponto. Para o segundo, adicionamos ao primeiro dois pontos. Para o terceiro, adicionamos ao segundo três pontos e assim sucessivamente. Em termos matemáticos, sendo Si correspondente a cada triângulo (assim, S1 está relacionado ao primeiro triângulo, S2, ao segundo etc.), teremos os seguintes números triangulares:

S1 = 1

S2 = 1 + 2 = 3

S3 = 1 + 2 + 3 = 6

S4 = 1 + 2 + 3 + 4 = 10

S5 = 1 + 2 + 3 + 4 + 5 = 15

Portanto, os números triangulares podem ser obtidos pela soma dos termos de progressões aritméticas de números naturais com razão 1 e primeiro termo 1.

Não pare agora... Tem mais depois da publicidade ;)

Números triangulares e progressões aritméticas

Como os números triangulares podem ser vistos como progressões aritméticas, é natural usar a soma dos termos dessas progressões para tentar encontrá-los. A soma dos termos de uma progressão aritmética (PA) de razão 1 é dada pela seguinte expressão:

Soma dos termos de uma PA

O lado esquerdo da igualdade indica apenas que estamos somando os termos iniciais de uma PA com n termos. A segunda parte é a fórmula que será usada. Assim, todo número triangular é resultado da soma S dos termos da PA (1, 2, 3, 4, 5, …), que pode ser obtido da seguinte forma:

S = n(n + 1)
     2

*n é o número de termos da PA.

Por exemplo, o primeiro número triangular é 1. Usando a fórmula acima para encontrá-lo, teremos n = 1, pois é o primeiro número triangular:

S = n(n + 1)
     2

S = 1(1 + 1)
      2

S = 1(2)
      2

S = 2
      2

S = 1

Já o décimo número triangular tem n = 10, pois é o décimo número triangular:

S = n(n + 1)
     2

S = 10(10 + 1)
      2

S = 10(11)
      2

S = 110
      2

S = 55

O décimo número triangular é 55.

Propriedade envolvendo números triangulares

A soma de dois números triangulares consecutivos é um quadrado perfeito, ou seja, possui raiz quadrada exata. Observe os exemplos:

S2 + S3 = 3 + 6 = 9
√9 = 3

S5 + S6 = 15 + 21 = 36
√36 = 6

S10 + S11 = 55 + 66 = 121
√121 = 11


Por Luiz Paulo Moreira
Graduado em Matemática

Publicado por Luiz Paulo Moreira Silva

Artigos Relacionados

Classificação de triângulos
Classificação de triângulos: critérios e nomes
O homem primitivo utilizava a contagem.
Como surgiram os números
Os números já estavam presentes na pré-história? Como foram criados? Saiba aqui!
Conjunto dos Naturais
Conjuntos Numéricos, Conjunto dos naturais, Representação dos conjuntos dos números naturais, Naturais não-nulos, Conjunto infinito, conjunto finito, Sucessor e Antecessor.
Conjunto dos números inteiros
Conheça o conjunto dos números inteiros e aprenda as características de seus elementos. Saiba como fazer sua representação na reta e as principais operações com ele.
A distância entre dois pontos diz respeito ao segmento de reta que liga dois pontos em um plano cartesiano.
Distância entre dois pontos
Entenda qual é o segmento que representa a distância entre dois pontos no plano cartesiano e conheça sua fórmula para calcular essa distância.
O número 81 é quadrado perfeito. Para verificar a validade dessa afirmação, podemos utilizar o método geométrico ou a fatoração
Número quadrado perfeito
Você sabia que existem dois métodos para identificar se um número é quadrado perfeito ou não? Clique e confira!
O conjunto dos naturais é formado por todos os números inteiros não negativos
Números naturais
Clique para aprender o que é o conjunto dos números naturais, conheça alguns de seus subconjuntos e entenda os conceitos de sucessor e antecessor.
Organizando termos de modo que o posterior sempre seja a soma do anterior com uma constante
Soma dos termos de uma PA
Aprenda a calcular a soma dos termos de uma PA por meio de uma fórmula, o modo como ela foi idealizada e as implicações desse fato na sua criação.
video icon
Sociologia
Racismo e Ciência
Nesta aula, o prof. João Gabriel apresenta a ideia de que “raças humanas” e o racismo subsequente têm uma origem relativamente recente na história das sociedades. Entenda aqui a relação entre ciência e racismo!

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Sigmund Freud
Filosofia
Sigmund Freud
Nessa videoaula você conhecerá mais sobre a vida e estudos do "pai" da psicanálise.
video icon
Thumb Brasil Escola
Literatura
Realismo fantástico
Trazemos uma análise sobre realismo fantástico. Assista já!
video icon
Thumb Brasil Escola
Química
Funções orgânicas
Tire um tempo para entender melhor o que são as amidas.