Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Geometria
  4. Classificação de triângulos

Classificação de triângulos

A classificação de triângulos é um ponto muito relevante no estudo dessa forma geométrica, que possui três vértices, três lados e três ângulos internos e externos. A fim de facilitar o estudo acerca desse polígono, vamos classificá-lo em relação ao tamanho dos lados (equilátero, isósceles e escaleno) e às medidas de seus ângulos internos (retângulo, acutângulo e obtusângulo). Ao classificá-lo, vamos estudar também algumas propriedades que facilitam as resoluções de problemas.

Os triângulos são polígonos de três vértices que podem ter diferentes classificações.

Classificação dos triângulos quanto aos lados

Podemos classificar um triângulo de acordo com a medida de seus lados. Temos três possíveis combinações em relação ao tamanho dos lados: ou todos os lados são iguais, ou dois lados são iguais e um diferente, ou todos os lados são diferentes.

  • Triângulo equilátero

O triângulo equilátero possui todos os lados congruentes, isto é, todos os lados do triângulo possuem a mesma medida.

  • Triângulo isósceles

O triângulo isósceles possui pelo menos dois lados congruentes, ou seja, possui dois lados iguais e um diferente.

  • Triângulo escaleno

O triângulo escaleno possui todos os seus lados diferentes, ou seja, cada lado tem uma medida diferente.

Não pare agora... Tem mais depois da publicidade ;)

Classificação dos triângulos quanto aos ângulos

  • Triângulo acutângulo

O triângulo acutângulo possui todos os seus ângulos internos menores que 90°, ou seja, a medida de cada ângulo interno é um ângulo agudo.

  • Triângulo retângulo

O triângulo retângulo apresenta, em um de seus ângulos internos, um ângulo de 90°, ou seja, um ângulo reto. Além disso, é válido destacar que o lado oposto ao ângulo reto é chamado de hipotenusa e os demais lados são chamados de catetos. Nesse triângulo, é válido o teorema de Pitágoras.

  • Triângulo obtusângulo

O triângulo obtusângulo possui um dos seus ângulos internos com medida maior que 90° e menor que 180°, ou seja, um ângulo obtuso.

Leia também: Área do triângulo: fórmula e exemplos

Propriedade dos triângulos

  • Propriedade 1: Em qualquer triângulo, a soma dos ângulos internos é sempre igual a 180°.

Exemplo

Vamos determinar a medida dos ângulos de um triângulo retângulo com dois ângulos agudos iguais.

Como temos um triângulo retângulo, logo um de seus ângulos é igual a 90°. Como os demais ângulos agudos são iguais, podemos chamá-los de x. Sabemos também que a soma dos ângulos internos de qualquer triângulo é igual a 180°, assim:

90° + x + x = 180°

2x = 180° – 90°

2x = 90°

x = 45°

  • Propriedade 2: Os ângulos internos de um triângulo equilátero são todos iguais a 60°.

Exemplo

Suponha que os valores dos ângulos internos sejam desconhecidos. Assim, chamaremos todos de x, uma vez que o triângulo é equilátero. Como a soma dos ângulos internos é sempre igual a 180°, temos:

x + x + x = 180°

3x = 180°

x = 60°

  • Propriedade 3: A altura (segmento de reta perpendicular a um dos lados do triângulo) a mediana (que divide o lado ao meio) e a bissetriz (que divide um ângulo interno ao meio) coincidem-se no triângulo equilátero.
  • Propriedade 4: Os ângulos da base de um triângulo isósceles são congruentes.

Veja também: Semelhança de triângulos

Exercícios resolvidos

Questão 1 – Determine os valores de x e y sabendo que o triângulo é equilátero.

Solução

Como o triângulo é equilátero, todos os seus lados são iguais, assim:

6x – 12 = 30

6x = 30 – 12

6x = 18

x = 3

Por outro lado, temos também que:

12y – 18 = 30

12y = 30 +18

12y = 48

y = 4

Portanto, x = 3 e y = 18.

Publicado por: Robson Luiz
Assista às nossas videoaulas
Assuntos relacionados
Volume do Paralelepípedo
O volume do paralelepípedo corresponde à multiplicação do comprimento pela largura e pela altura. Confira!
Triângulos isósceles: dois lados com a mesma medida
Propriedades do triângulo isósceles
Veja propriedades que podem ser usadas para diferenciar triângulos isósceles de triângulos escalenos.
Figura formada por paralelogramos em perspectiva
Paralelogramos
Clique e descubra o que são paralelogramos e como eles são classificados em quadrados, losangos e retângulos.
Na parte de baixo, o tronco da pirâmide
Tronco da pirâmide
Clique e aprenda o que é um tronco de uma pirâmide, como esse sólido é formado, seus elementos e o modo de calcular sua área e volume.
Erros de cálculos, interpretação e montagem são os mais comuns na regra de três
Três erros cometidos na regra de três
Clique para ver os três erros mais cometidos na construção e resolução de uma regra de três e meios de evitá-los!
O triângulo equilátero possui três lados congruentes
Propriedades do triângulo equilátero
Clique para aprender as propriedades dos triângulos equiláteros e para obter exemplos do uso dessas propriedades em problemas de Geometria.
Número triangular 10, representado pela sequência 1 a 4 nas faces frontais dos dados
Números triangulares
Clique para aprender o que são e como obter os números triangulares e a interessante propriedade envolvendo suas raízes.
Polígono regular de seis lados inscrito em uma circunferência
Propriedades do polígono regular inscrito
Aprenda algumas propriedades do polígono regular inscrito na circunferência e saiba como relacionar medidas e proporções dessa figura.
Ângulos notáveis são os mais usados na Trigonometria
Ângulos notáveis
Conheça os ângulos notáveis e descubra uma maneira de encontrá-los a partir da construção de triângulos.
Entre os erros mais frequentes em questões de Trigonometria, está o uso incorreto das razões trigonométricas
Três erros mais cometidos na Trigonometria
Descubra quais são os três erros mais cometidos em Trigonometria e saiba como resolver corretamente questões com esse conteúdo.
Exemplos de triângulos equiláteros formados por outros três triângulos congruentes obtusângulos
Triângulos
Clique para aprender o que são os triângulos e conheça quais os elementos dessa figura e as suas principais propriedades.
Algumas propriedades dos números podem ser usadas como passatempo ou diversão
Curiosidades sobre os números
Conheça algumas curiosidades sobre os números e veja como as propriedades matemáticas podem ser fascinantes. Algumas dessas particularidades podem não ter grande utilidade nos cálculos mais comuns dessa disciplina, mas são passatempos divertidos para aqueles que gostam de desafios. Clique e descubra!
Aplicações do Cálculo da Área de uma Circunferência
Observe algumas aplicaões do cálculo da área de figuras circulares, ou seja, que envolvem uma circunferência.
Heron de Alexandria
Fórmula de Heron
Clique aqui e aprenda o que é e quando utilizar a fórmula de Heron.
Volume do Cubo
Capacidade do cubo em função da medida da aresta.