Whatsapp icon Whatsapp

Relações métricas no hexágono regular inscrito

As relações métricas no hexágono regular inscrito são fórmulas usadas para calcular lado e apótema a partir da medida do raio de uma circunferência.
As relações métricas podem ser usadas para calcular medidas do hexágono regular inscrito em uma circunferência
As relações métricas podem ser usadas para calcular medidas do hexágono regular inscrito em uma circunferência

Dizemos que um polígono está inscrito quando existe uma circunferência que contém todos os seus vértices. Além disso, um polígono é regular quando ele possui todos os lados com a mesma medida e seus ângulos internos são congruentes. Portanto, um hexágono regular inscrito é um polígono que possui seis lados com a mesma medida e seis ângulos internos congruentes e cujos vértices são todos pontos pertencentes a uma circunferência. Veja na figura abaixo um hexágono regular inscrito:

As relações métricas no hexágono regular inscrito são fórmulas que podem ser usadas para encontrar a medida de seu lado e a medida de seu apótema a partir apenas do raio da circunferência na qual ele está inscrito. Essas fórmulas são:

l = r

Em que o raio da circunferência é igual ao lado do hexágono e:

a = r3
     2

Nessa fórmula, a é o apótema e r é o raio da circunferência.

Construções e elementos no hexágono inscrito

Antes de discutir essas fórmulas, convém realizar algumas construções no hexágono a fim de que suas demonstrações tornem-se mais diretas.

1º – Escolha dois vértices consecutivos do hexágono e construa os raios da circunferência que se ligam a eles. Observe na imagem a seguir que esses raios são os segmentos OA e OB, os quais, unidos ao segmento AB, formam um triângulo:

2º – Trace o apótema do hexágono, que, na imagem acima, é o segmento AP. O apótema é um segmento de reta que liga o centro de um polígono a um de seus lados, formando com ele um ângulo reto.

Não pare agora... Tem mais depois da publicidade ;)

3º – Como o polígono é regular, o apótema também é mediana do lado AB e bissetriz do ângulo AÔB.

4º – Observe que o ângulo AÔB mede 60°. Isso acontece porque o polígono é regular, então, cada um de seus seis ângulos centrais é igual a 360°/6 = 60°.

5º – Como os lados AO e BO do triângulo ABO são raios da circunferência na qual o hexágono está inscrito, então, eles são congruentes. Isso significa que esse triângulo é isósceles e que os ângulos da base são iguais. Pela soma dos ângulos internos do triângulo, concluímos que cada ângulo interno de ABO mede 60°. Portanto, ele é um triângulo equilátero.

Dadas essas propriedades, colocaremos todas as medidas encontradas no triângulo ABO. Observe que, se o lado do hexágono mede l, então, o segmento PB = l/2.

Demostração das relações métricas

Primeiramente, sabendo que o triângulo ABP é equilátero, o lado l do hexágono tem a mesma medida que o raio da circunferência. Assim:

l = r

Além disso, considere o triângulo OPB da imagem anterior e calcule o cosseno de 30°:

Cos30° = a
               r

√3 = a
2     r

r√3 = a
2      

a = r3
     2

Exemplo: Calcule a medida do lado e do apótema de um hexágono regular inscrito em uma circunferência de raio 10 cm.

Lado: como l = r, teremos que l = 10 cm.

Apótema: Usando a fórmula encontrada, teremos:

a = r3
     2

a = 103
      2

a = 5√3 cm.

Publicado por Luiz Paulo Moreira Silva
Assista às nossas videoaulas

Artigos Relacionados

Conhecendo os Elementos de um Polígono
Clique aqui e aprenda a identificar quais são os elementos de um polígono!
Círculo e circunferência
Entenda a diferença entre círculo e circunferência, além de algumas propriedades e definições básicas que envolvem essas figuras geométricas!
Polígonos Inscritos e Circunscritos
Relação entre Polígonos e Circunferências.
Polígonos convexos e regulares
Compreenda a definição de polígonos, bem como todos os pré-requisitos para que eles sejam considerados convexos e regulares.
Propriedades do polígono regular inscrito
Aprenda algumas propriedades do polígono regular inscrito na circunferência e saiba como relacionar medidas e proporções dessa figura.
Propriedades do triângulo isósceles
Veja propriedades que podem ser usadas para diferenciar triângulos isósceles de triângulos escalenos.
Retas
Confira as principais ideias que envolvem retas e algumas propriedades básicas dessa figura geométrica!
Soma dos ângulos internos de um triângulo
Clique para entender a soma dos ângulos internos de um triângulo e para obter exemplos dessa soma e a demonstração desse resultado.
Tabelas de razões trigonométricas
Clique para aprender a utilizar tabelas de razões trigonométricas e para descobrir os valores de seno, cosseno e tangente para ângulos agudos!
Triângulo equilátero
Conheça o triângulo equilátero. Aprenda quais são suas propriedades. Veja a fórmula para calcular a área e a altura dessa figura.
Ângulos
Aprenda o que são ângulos. Conheça suas classificações e saiba como medi-los. Entenda o que são ângulos congruentes e outros conceitos.
video icon
Escrito"Matemática do Zero | Moda e Mediana" em fundo azul.
Matemática do Zero
Matemática do Zero | Moda e Mediana
Nessa aula veremos como calcular a moda e a mediana de uma amostra. Mosrarei que a moda é o elemento que possui maior frequência e que uma amostra pode ter mais de uma moda ou não ter moda. Posteriormente, veremos que para calcular a mediana devemos montar o hall (organizar em ordem a amostra) e verificar a quantidade de termos dessa amostra.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.