Progressão geométrica finita é uma PG que tem um número determinado de elementos. Por exemplo, a seqüência (3,6,12,24,48) é uma PG de razão igual a q = 2.
A soma dos temos dessa PG será 3 + 6 + 12 + 24 + 48 = 93. Fazer essa soma é fácil, pois ela possui apenas cinco elementos, caso seja necessário somar os termos de uma PG com mais de dez elementos, o que é mais complicado, é preciso utilizar uma fórmula. Veja a sua demonstração:
Dada uma PG finita qualquer com n elemento, ou seja, com a quantidade de elementos indefinida. PG finita (a1, a2, a3, ... , an). A soma desses n elementos será feita da seguinte forma:
Sn = a1 + a2 + a3 + ... + an
Sabendo que a2 = a1 . q; a3 = a1 . q2; an = a1 . qn – 1
Podemos dizer que a soma dessa PG será:
Sn = a1 + a1 . q + a1 . q2 + a1 . q3 + ... + a1 . qn – 2 + a1 . qn – 1.
Como se trata de uma equação, se multiplicar um membro é preciso multiplicar o outro, por isso é necessário multiplicar os dois termos da última equação por q:
q . Sn = (a1 + a1 . q + a1 . q2 + a1 . q3 + ... + a1 . qn – 1)
q . Sn = a1 . q + a1 . q2 + a1 . q3 + a1 . q4 + ... + a1 . qn – 1 + a1 . qn
Fazendo a subtração:
Colocando em evidência os termos semelhantes, temos:
q . Sn – q . Sn = a1 . qn – a1
Sn (q - 1) = a1 (qn – 1)
Isolando o termo Sn (soma dos elementos), iremos obter a seguinte fórmula:
Sn = a1 (qn – 1)
q - 1
Portanto, a fórmula para obter a soma dos n elementos de uma PG finita é:
Sn = a1 (qn 1)
q 1
Exemplo: Dê a soma dos termos da seguinte PG (7,14,28, ... , 3584).
Para utilizarmos a fórmula da soma é preciso saber quem é o 1º termo, a razão e a quantidade de elementos que essa PG possui.
a1 = 7
q = 2
n = ?
Sn = ?
Portanto, é preciso que encontremos a quantidade de elementos que possui essa PG, utilizando a fórmula do termo geral.
an = a1 . qn – 1
3584 = 7 . 2n – 1
3584 : 7 = 2n – 1
512 = 2n – 1
29 = 2n – 1
n – 1 = 9
n = 10
Sn = a1 (qn – 1)
q - 1
S10 = 7 (210 – 1)
2 – 1
S10 = 7 (1024 – 1)
2 – 1
S10 = 7 . 1023
S10 = 7161
Você está aqui
- Mundo Educação
- Matemática
- Progressão
- Soma dos termos de uma P.G finita
Soma dos termos de uma P.G finita
Não pare agora... Tem mais depois da publicidade ;)
Publicado por:
Danielle de Miranda
Assista às nossas videoaulas
Assuntos relacionados

Classificação da Progressão Aritmética
Vamos verificar como uma sequência numérica e progressões podem ser determinadas? Clique aqui!

Fórmula do termo geral de uma PA
Aprenda a calcular o termo geral de uma PA usando uma fórmula que exige apenas seu primeiro termo e a razão.
Interpolando Termos em uma P.A.
Introduzindo meios em uma P.A.
Notação especial da progressão aritmética
: Definição de Progressão Aritmética, Identificação de P.A, Construção de P.A, Estudo e cálculos do termo geral de uma P.A, Notações Especiais, identificação da razão de uma P.A.
Praticando Progressões
Exemplos resolvidos sobre progressões.

Produto dos termos de uma PG finita
Você sabe como calcular o produto dos termos de uma (PG) finita? Conheça a fórmula usada nesse tipo de operação com progressões geométricas e aprenda também uma maneira fácil de demonstrar esse cálculo, que pode ainda ser usado para chegar à fórmula geral do produto dos termos. Clique e saiba mais sobre esse tema!

Progressão aritmética
Conheça as propriedades da progressão aritmética e aprenda a classificá-la. Entenda o cálculo do termo geral de uma P.A. e a soma geral de uma progressão aritmética.
Progressão geométrica
Reconheça uma progressão geométrica, aprenda as suas propriedades e classificação, entenda como encontrar o termo geral e como calcular a soma dos termos de uma PG.
Soma dos infinitos termos de uma P.G
Sequências geométricas infinitas.

Soma dos termos de uma PA
Aprenda a calcular a soma dos termos de uma PA por meio de uma fórmula, o modo como ela foi idealizada e as implicações desse fato na sua criação.

Soma dos termos de uma PG infinita
Clique e aprenda a calcular a soma dos termos de uma progressão geométrica (PG) infinita. Veja, por meio de exercícios resolvidos e comentados, como esse conteúdo pode ser cobrado em vestibulares e no Enem. Aprenda também a usar a fórmula do termo geral da PG para encontrar informações não explícitas em exercícios.

Três erros mais cometidos em progressões no Enem
Clique e veja os três erros mais cometidos em progressões no Enem. Saiba formas de evitar esses erros e aumente suas chances de tirar boas notas no exame. Veja as fórmulas mais usadas no cálculo de progressões geométricas e aritméticas e obtenha um exemplo de exercício onde as PAs estão escondidas em sequências comuns.