Elementos do polígono regular inscrito

Os elementos do polígono regular inscrito na circunferência são obtidos a partir de elementos da própria circunferência analisados sobre o polígono.
Polígonos inscritos e circunscritos na circunferência

Dizemos que um polígono é inscrito em uma circunferência quando todos os seus vértices são pontos da circunferência. A partir dessa definição, pode-se perceber que todos os lados de um polígono inscrito são cordas da circunferência. Quando esse polígono é regular, podemos observar os seguintes elementos e suas propriedades.

Raio do polígono regular

O raio do polígono regular é também o raio da circunferência que o circunscreve (na qual ele está inscrito). Sendo assim, se o raio da circunferência mede r, então o raio do polígono regular inscrito nela também mede esse valor.

Com isso, podemos perceber que o raio do polígono inscrito é a distância do seu centro até um de seus vértices, que é equivalente ao raio da circunferência. A figura abaixo ilustra um dos raios de um polígono regular inscrito.

Ângulo central do polígono regular

O ângulo central do polígono regular é o ângulo central da circunferência que passa por dois vértices adjacentes (consecutivos) do polígono regular inscrito.

Em outras palavras, o vértice do ângulo central do polígono regular é o centro da circunferência e seus lados passam pelos vértices do polígono, como mostra a imagem a seguir:

Para calcular o valor do ângulo central, basta dividir o ângulo total do círculo pelo número de lados (n) do polígono. Sabendo que esse ângulo é de 360°, teremos:

α = 360
      n

Apótema do polígono

A apótema de um polígono é o segmento de reta que vai do ponto médio de um de seus lados até o centro da circunferência na qual ele está inscrito. Todas as apótemas de um polígono regular possuem o mesmo comprimento.


O segmento a é a apótema do polígono inscrito

Observe que os raios ao redor de uma apótema formam dois triângulos retângulos OBG e OAB. Pode-se mostrar que esses triângulos são congruentes da seguinte maneira:

1 – Os lados OA e OB são congruentes, pois são raios do círculo (e do polígono regular);

2 – Os dois triângulos possuem um ângulo reto;

3 – Os ângulos A e B são congruentes, pois esse triângulo é isósceles (possui dois lados congruentes) e os ângulos da base do triângulo isósceles são congruentes.

As três observações acima configuram o caso de congruência LAA (lado, ângulo e ângulo oposto). Portanto, podemos dizer que os dois triângulos são congruentes.

Além disso, como as apótemas e raios são do mesmo tamanho sempre que o polígono é regular, podemos afirmar que todo polígono regular pode ser dividido em triângulos congruentes a partir de seus raios. Assim, um hexágono regular, por exemplo, pode ser dividido em triângulos da seguinte maneira:

Todos os triângulos da figura acima são congruentes.

Publicado por Luiz Paulo Moreira Silva
Matemática do Zero
Matemática do Zero | Princípio fundamental da contagem
Nessa aula veremos o que é o princípio fundamental da contagem. O princípio fundamental da contagem é uma técnica para calcularmos de quantas maneiras decisões podem combinar-se. Se uma decisão pode ser tomada de n maneiras e outra decisão pode ser tomada de m maneiras, o número de maneiras que essas decisões podem ser tomadas simultaneamente é calculado pelo produto de n · m.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos