Triângulo escaleno

Triângulo é classificado como escaleno quando ele tem todos os seus lados com medidas distintas. O triângulo escaleno é o mais comum dos triângulos no cotidiano.
Triângulo escaleno tem todos os lados com medidas diferentes.

O triângulo escaleno é aquele que tem todos os lados com medidas distintas, diferenciando-se, então, do triângulo isósceles, que tem dois lados congruentes, e do triângulo equilátero, que tem todos os lados com a mesma medida.

Para calcular o perímetro do triângulo escaleno, basta realizar a soma de todos os lados do triângulo. A medida da área de um triângulo pode ser calculada pela fórmula da área de um triângulo qualquer, que nada mais é que o produto entre a base e a altura dividido por dois. Existe também a fórmula de Heron, que auxilia no cálculo da área do triângulo tendo somente as medidas dos lados desse triângulo.

Leia também: Congruência de triângulos — quando as medidas equivalentes dos triângulos são iguais

Resumo sobre triângulo escaleno

  • O triângulo escaleno é o triângulo que tem todos os lados com medidas distintas.
  • Para calcular a área de um triângulo, utilizamos a fórmula:

Dado um triângulo de lados a, b, e c, a sua área pode ser calculada também pela fórmula de Heron (em que p é o semiperímetro do triângulo):

  • O perímetro do triângulo escaleno é a igual à soma dos três lados.

O que é o triângulo escaleno?

O triângulo escaleno é o mais comum na geometria, pois é o que possui os três lados com medidas distintas.

Ângulos do triângulo escaleno

O triângulo escaleno tem os três lados com medidas distintas bem como ângulos internos diferentes.

Assim com a medida dos lados, os ângulos de um triângulo escaleno são sempre distintos. O triângulo escaleno, assim como os demais triângulos, tem soma de ângulos internos igual a 180º.

Leia também: Soma dos ângulos internos de um triângulo

Perímetro do triângulo escaleno

Como o triângulo escaleno tem os três lados com medidas distintas (a, b e c), então o perímetro do triângulo pode ser calculado por:

Exemplo:

Um terreno tem formato de um triângulo, com lados medindo 8 metros, 10 metros 12 metros. Então o perímetro desse terreno é:

 O perímetro desse triângulo é de 30 metros.

Área do triângulo escaleno

O cálculo da área do triângulo escaleno não se difere do dos outros triângulos, logo, para tanto, basta calcular o produto entre o comprimento da base e da altura e dividir por dois, como na fórmula a seguir:

Exemplo:

Qual é a área do triângulo escaleno que tem base de 9 cm e altura de 12 cm?

Resolução:

Dados b = 9 cm e h = 12 cm, a área do triângulo é calculada por:

Fórmula de Heron

Quando não conhecemos a altura do triângulo escaleno, ainda assim é possível calcular a sua área utilizando a fórmula de Heron. Na fórmula de Heron, conhecendo a medida dos três lados do triângulo, podemos calcular a sua área. Dado um triângulo escaleno de lados a, b e c, por essa fórmula, a sua área pode ser dada por:

Em que p é o semiperímetro do triângulo, calculado por:

Exemplo:

Dado o triângulo de lados medindo 3 cm, 4 cm e 5 cm, e utilizando a fórmula de Heron, qual é a área dele?

Resolução:

Primeiro calcularemos o semiperímetro:

Agora calcularemos a área do triângulo:

Então a área do triângulo é de 6 cm².

Leia também: Semelhança de triângulos — as relações de proporção entre essas figuras geométricas

Classificações do triângulo

Quando analisamos o triângulo pelos seus lados, há três classificações possíveis: escaleno, isósceles ou equilátero. O triângulo escaleno, como mencionado, tem os três lados com medidas diferentes; quando o triângulo tem dois lados congruentes, ou seja, com a mesma medida, ele é chamado de isósceles; e, quando ele tem os três lados congruentes, é classificado como equilátero.

  • Videoaula sobre classificações do triângulo

Exercícios resolvidos sobre triângulo escaleno

Questão 1

Parte de um terreno tem formato de um triângulo escaleno, com área igual a 78 m². Sabendo que a base desse terreno tem 13 metros, então a altura desse terreno é de:

A) 10 metros

B) 11 metros

C) 12 metros

D) 13 metros

E) 14 metros

Resolução:

Alternativa C

Sabemos que a área é igual à metade do produto entre a base e a altura do triângulo.

Sabendo que a base desse triângulo tem 13 m, e que sua área é 78 m², então temos que:

Questão 2

Um terreno tem formato de um triângulo escaleno, com lados medindo 3 metros, 5 metros e 4 metros. Esse terreno será cercado com arame farpado, de modo que tenha exatamente 4 fios de arame farpado em cada lado. Sendo assim, a quantidade mínima de arame necessária para que esse terreno seja cercado é de:

A) 96 metros

B) 80 metros

C) 64 metros

D) 52 metros

E) 48 metros

Resolução:

Alternativa E

Primeiro calcularemos o perímetro do terreno:

Agora multiplicaremos por 4, já que serão dadas 4 voltas.

Publicado por Raul Rodrigues de Oliveira
Matemática do Zero
Matemática do Zero| Probabilidade
Nessa aula veremos o que probabilidade é o estudo das chances de obtenção de cada resultado de um experimento aleatório. A essas chances são atribuídos os números reais do intervalo entre 0 e 1. Para isso, inicaremos a aula falando o que é espaço amostral e evento.
Outras matérias
Biologia
Matemática
Geografia
Física
Vídeos