Perímetro
Perímetro é uma medida observada em figuras geométricas planas, isto é, figuras bidimensionais. Ele é definido como a medida do contorno de uma figura geométrica, logo, é uma medida de comprimento.
O método usado para obter o perímetro varia de figura para figura, mas a maneira mais óbvia de encontrar esse comprimento é medir com régua, trena, metro ou qualquer outro objeto que possa ser usado para esse tipo de medida. Entretanto, as propriedades das figuras geométricas podem ser usadas para dar mais precisão à medida e acelerar o processo de encontrá-la.
Perímetro de polígonos
Os polígonos são figuras geométricas planas fechadas, formadas por lados que são segmentos de retas. Esses segmentos não podem se cruzar e se encontram apenas em suas extremidades.
O perímetro de um polígono é dado pela soma das medidas dos seus lados. É possível usar essa propriedade para todo polígono, uma vez que os lados dos polígonos sempre serão segmentos de reta.
O perímetro do quadrilátero a seguir, com lados medindo 2 cm, 3 cm, 5 cm e 6 cm, possui perímetro igual a 2 + 3 + 5 + 6 = 16 cm.
Perímetro do retângulo
Os retângulos são paralelogramos, ou seja, possuem lados opostos paralelos e congruentes. Logo, para descobrir a medida do perímetro de um retângulo, é necessário apenas que duas de suas medidas não paralelas sejam conhecidas. As outras duas terão as mesmas medidas, pois, em um retângulo, lados opostos são paralelos.
Exemplo – O perímetro de um retângulo que possui base igual a 10 cm e altura igual a 20 cm é:
10 + 10 + 20 + 20 = 100 cm
Perímetro do polígono regular
Um polígono regular é aquele que apresenta todos os lados congruentes e no qual todos os ângulos internos possuem a mesma medida.
Como os lados de um polígono regular são congruentes, devemos apenas conhecer a medida de um de seus lados para calcular seu perímetro. Portanto, dado um polígono regular de n lados, com o comprimento de cada lado igual a s, seu perímetro será igual a:
P = n·s
Isso significa que basta multiplicar o número de lados do polígono pelo comprimento de cada lado.
Perímetro dos círculos
O perímetro do círculo é igual ao comprimento da circunferência de mesmo raio. Muitos autores se referem ao perímetro do círculo como “comprimento da circunferência”, de modo que essa última expressão é mais comum.
Essa medida é dada pela seguinte fórmula:
C = 2πr
Nessa fórmula, C é o comprimento da circunferência (ou perímetro do círculo de mesmo raio), r é o raio da circunferência e π é uma constante irracional: aproximadamente 3,14.
Portanto, para descobrir o comprimento de uma circunferência, devemos conhecer a medida de seu raio.
Perímetro de figuras mistas
Também é possível que uma figura geométrica plana não seja polígono nem círculo, mas uma parte de um círculo, ou uma composição feita por partes circulares e partes retas.
A figura abaixo, por exemplo, é formada por uma metade de um círculo e uma parte de um quadrado.
Para calcular seu perímetro, devemos calcular o perímetro do círculo e dividir o resultado por 2 (pois a parte circular é metade do círculo) e depois somar esse resultado às medidas dos três lados do quadrado.
Observe que o diâmetro do círculo é igual à medida de um dos lados do quadrado, portanto, o raio do círculo é igual a 5 cm. O comprimento da semicircunferência é:
C = 2πr
2
C = πr
C = 3,14·5
C = 15,7 cm
Somando as medidas de perímetro da semicircunferência com os três lados do quadrado, teremos:
10 + 10 + 10 + 15,7 = 45,7 cm.