Whatsapp icon Whatsapp

Arredondamento

Arredondamento é o nome dado ao processo de dispensa de casas decimais desnecessárias em números decimais.
Pi: número irracional que geralmente é arredondado para 3,14
Pi: número irracional que geralmente é arredondado para 3,14

Arredondamento é o nome dado à dispensa de casas decimais em um número decimal. Esse procedimento geralmente é feito quando as casas dispensadas não possuem grande relevância no resultado, como acontece quando a conta de um restaurante é R$ 100,00 exatos a serem divididos para três amigos. O resultado dessa divisão é uma dízima periódica: R$ 33,3333...

A questão é que não faz sentido pagar 0,3333 centavos, então, arredondamos o resultado dessa divisão para R$ 33,33.

Esse valor foi arredondado para a segunda casa decimal, pois preservamos os dois primeiros algarismos após a vírgula. Para fazer esse arredondamento, descartamos todas as casas decimais e observamos a terceira, que é a mais próxima da segunda e a única que tem alguma relevância para arredondá-la. Para escolher se o algarismo na segunda casa decimal deve ser mantido ou acrescido em uma unidade, observamos os critérios a seguir:

Critérios para arredondamento

Existem critérios claros para que esses arredondamentos sejam feitos da maneira correta. Esses critérios são definidos pela fundação IBGE, em sua resolução nº 886/66, e estão listados a seguir:

  • Ao arredondar um número para que ele tenha determinada quantidade de casas decimais, observamos a primeira casa decimal a ser descartada. Ela é chamada de casa de condição;

    Não pare agora... Tem mais depois da publicidade ;)
  •  Se o algarismo na casa de condição for < 5, a última casa decimal do número arredondado permanecerá inalterada; 

Vejamos o exemplo da divisão de R$ 100,00 por três citada acima, que precisou ser arredondada para a segunda casa decimal. Como o algarismo na casa de condição era 3 < 5, a última casa decimal do número arredondado permaneceu inalterada.

Vamos considerar outro exemplo: ao arredondar 3,4742 para a terceira casa decimal, podemos notar que a casa de condição está ocupada pelo número 2 < 5. Logo, o número arredondado é 3,474 e, assim, o algarismo 4 permanece inalterado.

  • Se o algarismo na casa de condição for > 5, aumentaremos uma unidade na última casa decimal. Ao arredondar 47,886 para a segunda casa decimal, notamos que 6 > 5; assim, o resultado do arredondamento é 47,89;

  • Se o algarismo na casa de condição for 5, aumentaremos uma unidade na última casa decimal, a não ser que esse 5 seja o último algarismo do número ou seja seguido apenas por zeros. Nesse caso, ao arredondar 2,7450001, por exemplo, para a segunda casa decimal, temos 2,75 como resultado. Ao arredondar 2,745000 para a segunda casa decimal, temos 2,74 como resultado. 

Publicado por Luiz Paulo Moreira Silva

Artigos Relacionados

Algoritmo da divisão
Aprenda a utilizar o algoritmo da divisão, mais conhecido no Brasil como método da chave.
Conjunto dos números reais
Acesse e descubra quais são os elementos que compõem o conjunto dos números reais.
Divisão
Descubra o passo a passo de como realizar uma divisão sem erros e veja também como realizar divisão com números decimais.
Divisão por divisores maiores que 10
Clique para aprender o método utilizado para realizar a divisão de números por divisores maiores que 10.
Fração geratriz
Entenda o que é a fração geratriz de uma dízima periódica e como encontrá-la utilizando equação ou um método prático.
Leitura de números decimais
fração, números decimais, leitura de números decimais, como é feita a leitura de números decimais, décimos, centésimos, milésimos, parte inteira de uma fração.
Multiplicação
Aprenda a realizar a multiplicação entre dois números utilizando o algoritmo dessa operação, bem como entenda o jogo de sinais.
Potências com expoente fracionário e decimal
Você sabe como resolver potências com expoente fracionário e decimal? Aprenda aqui a relação existente entre essas potências e as raízes!
Transformação para números fracionários
Números inteiros, Números decimais, Números fracionários, Transformação em fração, Dízima periódica, Décimo, Centésimo, Milésimo, Dez, Cem, Mil, Fração.
video icon
Escrito"Matemática do Zero | Gráfico de linha, barra (coluna) e setor (pizza)" em fundo azul.
Matemática do Zero
Matemática do Zero | Gráfico de linha, barra (coluna) e setor (pizza)
Nessa aula utilizarei um exemplo de uma pesquisa das idades dos alunos para construir um gráfico de linha, outro gráfico de barra ou coluna, e por fim, um gráfico de setor ou pizza.

Outras matérias

Biologia
Matemática
Geografia
Física
Vídeos
video icon
Pessoa com as pernas na água
Saúde e bem-estar
Leptospirose
Foco de enchentes pode causar a doença. Assista à videoaula e entenda!
video icon
fone de ouvido, bandeira do reino unido e caderno escrito "ingles"
Gramática
Inglês
Que tal conhecer os três verbos mais usados na língua inglesa?
video icon
três dedos levantados
Matemática
Regra de três
Com essa aula você revisará tudo sobre a regra de três simples.