Whatsapp icon Whatsapp

Função polinomial

Conhecemos como função polinomial a função em que a lei de formação pode ser descrita por um polinômio.
Uma função é polinomial quando a sua lei de formação é um polinômio.
Uma função é polinomial quando a sua lei de formação é um polinômio.

A função polinomial é aquela em que a lei de formação pode ser descrita por um polinômio. Há diferentes tipos desse tipo de função, que podem ser classificados de acordo com o grau do polinômio que descreve a lei de formação. Por exemplo, quando o polinômio da lei de formação possui grau 1, a função é conhecida como função polinomial do 1º grau, ou função afim; quando possui grau 2, a função é chamada de função do 2º grau ou função polinomial do 2º grau.

O valor numérico de uma função polinomial é encontrado quando substituímos a variável por um valor numérico e encontramos um valor numérico para a função. Toda função polinomial pode ser representada no plano cartesiano, e o comportamento da função depende diretamente do grau do polinômio.

Leia também: Diferenças entre função e equação

Resumo sobre função polinomial

  • Função polinomial é aquela que possui um polinômio em sua lei de formação.

  • A lei de formação de uma função de grau n é:

f(x) = an . xn + an – 1 . xn – 1 + ...+a2 . x2 + a1 . x + a0

  • As funções polinomiais são classificadas de acordo com o grau do polinômio.

  • Para calcular o valor numérico da função, basta substituir a variável pelo valor desejado.

  • Podemos fazer a representação do gráfico de uma função polinomial no plano cartesiano.

  • O gráfico de uma função polinomial do 1º grau é sempre uma reta.

  • O gráfico de uma função polinomial do 2º grau é sempre uma parábola.

  • O gráfico de uma função polinomial do 3º grau é sempre uma cúbica.

Não pare agora... Tem mais depois da publicidade ;)

O que é uma função polinomial?

Dada uma função f: A → B, definimos essa função como polinomial de grau n quando a sua lei de formação é formada por um polinômio de grau n.

f(x) = an . xn + an – 1 . xn – 1 + ...+a2 . x2 + a1 . x + a0

x → variável independente da função

n → grau da função (formado sempre por um número natural)

an, an-1,an-2, … a2, a1 e a0 → coeficientes da função, pertencentes ao conjunto dos números reais, em que an ≠ 0.

Vejamos a seguir alguns exemplos de funções polinomiais:

f(x) = 3x – 4

g(x) = –2x² + x + 9

h(x) = x³ – 10x + 8x

i(x) = – 2x9 + 3x6 – x4 + 7x² – 3

Grau de uma função polinomial

O grau da função polinomial é igual ao grau do polinômio que compõe a sua lei de formação. Vale lembrar que o grau de um polinômio é igual ao maior expoente entre os termos do polinômio. Classificar a função como função polinomial do primeiro grau, segundo grau, terceiro grau e assim sucessivamente é importante para compreender o comportamento dessa função.

  • Função polinomial do 1º grau ou função afim

Conhecida como função afim ou função polinomial de 1° grau, essa é a função em que a lei de formação é um polinômio que possui grau 1.

Exemplos:

  • f(x) = x

  • g(x) = 2x + 4

  • h(x) = – 3x + 2

  • i(x) = 1 – x

  • Função polinomial do 2º grau ou função quadrática

Conhecida como função quadrática ou função polinomial de 2º grau, sua lei de formação é um polinômio que possui grau 2.

Exemplos:

  • f(x) = 2x² – x + 8

  • g(x) = – 12x² – x

  • h(x) = 3x² + 2

  • i(x) = 2x²

  • Função polinomial do 3º grau ou função cúbica

A função cúbica ou função polinomial do 3º grau é a função que possui um polinômio de grau 3 em sua lei de formação.

Exemplos:

  • f(x) = 2x³ – x² + 3x + 4

  • g(x) = x³ – 3x² + 2x

  • h(x) = – x³ + 2x +4

  • i(x) = – x³

  • Função polinomial do 4º grau

A partir da função polinomial do 4º grau, não há nomes especiais como nas anteriores. A função é polinomial do 4º grau quando a sua lei de formação é um polinômio de grau 4.

Exemplos:

  • f(x) = 2x4 + 5x³ – 2x² + 3x + 1

  • g(x) = x4 + 2x² – x

  • h(x) = 3x4 – 2x3 + 2

  • i(x) = – 2x4

  • Função polinomial do 5º grau

Exemplos:

  • f(x) = 2x5 – 3x4 + x3 – 2x² + 2x + 7

  • g(x) = 4x5 + x2 – 2x

  • h(x) = – 2x5 + x³ + 2x²

  • i(x) = 2x5

  • Função polinomial do 6º grau

Exemplos:

  • f(x) = 6x6 – x5 – x4 + 3x3 – 2x² + x + 2

  • g(x) = 2x6 – 2x4 + x3 – 2

  • h(x) = 3x6– 3x5 – x³ – 5

  • i(x) = 2x6

Leia também: Função exponencial — a função inversa da função logarítmica

Valor numérico da função polinomial

Para encontrar o valor numérico da função, basta substituir a variável da função pelo valor dado.

Exemplo:

Considere f(x) = x5 + 2x² – 10x – 15 e calcule f(3).

Resolução:

Calcularemos o f(3), ou seja, o valor da função quando x = 3.

f(3) = 35 + 2·3² – 10 · 3 – 15

f(3) = 243 + 2 · 9 – 30 – 15

f(3) = 243 + 18 – 45

f(3) = 216

Gráfico da função polinomial

O gráfico da função polinomial é muito importante para os estudos do comportamento dessas funções. Esse gráfico depende diretamente do grau da função. Vejamos alguns exemplos a seguir:

  • Gráfico de uma função polinomial do 1º grau

O gráfico dessa função é sempre uma reta.

Gráfico de uma função do 1º grau
Gráfico de uma função do 1º grau
  • Gráfico de uma função polinomial do 2º grau

O gráfico de uma função do 2º grau é sempre uma parábola, como o da imagem a seguir:

Gráfico de uma função do 2º grau
Gráfico de uma função do 2º grau
  • Gráfico de uma função polinomial do 3º grau

O gráfico de uma função do 3º grau é conhecido como cúbica.

Gráfico de uma função do 3º grau
Gráfico de uma função do 3º grau

Leia também: Domínio, contradomínio e imagem de uma função

Exercícios resolvidos sobre funções polinomiais

Questão 1 — (Encceja 2018) Uma prestadora de serviços cobra pela visita à residência do cliente e pelo tempo necessário para realizar o serviço na residência. O valor da visita é R$ 40 e o valor da hora para realização do serviço é R$ 20. Uma expressão que indica o valor a ser pago (P) em função das horas (h) necessárias à execução do serviço é:

A) P = 40h

B) P = 60h

C) P = 20 + 40h

D) P = 40 + 20h

Resolução:

Alternativa D.

Seja P o preço. Sabemos que há uma taxa fixa de 40 reais, mais 20 reais a cada hora, logo a função que descreve essa situação é a função polinomial do primeiro grau:

P = 40 + 20h

Questão 2 — Sobre as funções polinomiais, julgue as afirmativas a seguir:

I → Toda função é polinomial, o que muda é o grau da função.

II → O gráfico de uma função polinomial do 2º grau é sempre uma parábola.

III → A função f(x) = 2x4 + 3x³ + 6x – 3 é uma função do 6º grau.

Marque a alternativa correta:

A) Somente a afirmativa I é verdadeira.

B) Somente a afirmativa II é verdadeira.

C) Somente a afirmativa III é verdadeira.

D) Todas as afirmativas são falsas.

Resolução:

Alternativa B.

I → Falsa. Existem funções que não são polinomiais.

II → Verdadeira. O gráfico de uma função quadrática é sempre uma parábola.

III → Falsa. A função apresentada possui grau 4.

Publicado por Raul Rodrigues de Oliveira
Assista às nossas videoaulas

Artigos Relacionados

Adição e subtração de polinômio
Redução de Polinômios.
Função
Entenda a definição de função e como ela pode ser aplicada para a resolução de situações-problema.
Função do 1º grau
Você sabe qual a formação de uma função do 1º grau? Clique aqui e aprenda!
Função do 2º grau ou função quadrática
Entenda o que é uma função quadrática e aprenda a construir o gráfico desse tipo função. Veja como calcular o vértice e as raízes dessa função.
Função exponencial
Clique aqui e conheça a função exponencial. Aprenda como fazer a análise e construir o gráfico desse tipo de função. Teste sua compreensão resolvendo os exercícios.
Monômios e Polinômios
Confira aqui definição e exemplos de monômio e polinômio, numa introdução do estudo da álgebra.
Multiplicação de polinômios
Clique aqui e conheça os três casos de multiplicação de polinômios. Saiba como fazer essa multiplicação e veja exemplos.
Polinômios
Você sabe o que são polinômios? Ou funções polinomiais? Clique aqui e entenda!
video icon
Texto"Matemática do Zero | Condição de existência de triângulos" em fundo azul.
Matemática do Zero
Matemática do Zero | Condição de existência de triângulos
Nessa aula veremos a condição de existência de um triângulo utilizando um raciocínio lógico e em seguida formalizando esse conhecimento.