Você está aqui
  1. Mundo Educação
  2. Matemática
  3. Conjuntos
  4. Operação com conjuntos

Operação com conjuntos

Quando falamos de operação lembramos logo de adição, subtração, divisão, multiplicação entre números. É possível também operar conjuntos.
Essas operações recebem nomes diferentes, como: União de conjuntos, Intersecção de conjuntos, Diferença de conjunto, Conjunto complementar.
Todas essas operações são representadas por símbolos diferentes. Veja a representação de cada uma delas:

União de conjuntos
Dados dois conjuntos A = {1, 2, 3, 4, 5} e B = {6, 7}, a união deles seria pegar todos os elementos de A e de B e unir em apenas um conjunto (sem repetir os elementos comuns). O conjunto que irá representar essa união ficará assim: {1, 2, 3, 4, 5, 6, 7}.

A representação da união de conjuntos é feita pelo símbolo U. Então,
A U B = {1, 2, 3, 4, 5, 6, 7}.

Intersecção de conjuntos
Quando queremos a intersecção de dois conjuntos é o mesmo que dizer que queremos os elementos que eles têm em comum.
Dados dois conjuntos A = {1, 2, 3, 4, 5, 6} e B = {5, 6, 7}, a intersecção é representada pelo símbolo ∩, então A ∩ B = {5, 6}, pois 5 e 6 são os elementos que pertencem aos dois conjuntos.

Se dois conjuntos não têm nenhum elemento comum, a intersecção deles será um conjunto vazio.

Dentro da intersecção de conjuntos há algumas propriedades:
1) A intersecção de um conjunto por ele mesmo é o próprio conjunto: A ∩ A = A
2) A propriedade comutatividade na intersecção de dois conjuntos é:
     A ∩ B = B ∩ A.
3) A propriedade associativa na intersecção de conjuntos é:
A ∩ (B ∩ C) = (A ∩ B) ∩ C 

Diferença entre conjunto
Dados o conjunto A = {0, 1, 2, 3, 4, 5} e o conjunto B = {5, 6, 7}, a diferença desses conjuntos é representada por outro conjunto, chamado de conjunto diferença.

Então os elementos de A – B serão os elementos do conjunto A menos os elementos que pertencerem ao conjunto B.
Portanto A – B = {0, 1, 2, 3, 4}.

Conjunto complementar
Conjunto complementar está relacionado com a diferença de conjunto.
Achamos um conjunto complementar quando, por exemplo, dado um conjunto A e B e o conjunto B e A, então B é complementar em relação a A.

A = {2, 3, 5, 6, 8}

B = {6,8}
B  A, então o conjunto complementar será CAB = A – B = {2, 3, 5}.

Não pare agora... Tem mais depois da publicidade ;)
Publicado por: Danielle de Miranda
Artigo relacionado
Teste agora seus conhecimentos com os exercícios deste texto
Lista de Exercícios

Questão 1

(PUC-MG)

Se A = ]-2;3] e B = [0;5], então os números inteiros que estão em B - A são:

a) -1 e 0

b) 1 e 0

c) 4 e 5

d) 3, 4 e 5

e) 0, 1, 2 e 3

Questão 2

(ENEM)

No dia 17 de Maio próximo passado, houve uma campanha de doação de sangue em uma Universidade. Sabemos que o sangue das pessoas pode ser classificado em quatro tipos quanto a antígenos. Uma pesquisa feita com um grupo de 100 alunos da Universidade constatou que 42 deles têm o antígeno A, 36 têm o antígeno B e 12 o antígeno AB. Sendo assim, podemos afirmar que o número de alunos cujo sangue tem o antígeno O é:

a) 20 alunos

b) 26 alunos

c) 34 alunos

d) 35 alunos

e) 36 alunos

Mais Questões
Assuntos relacionados
Conjunto e seus elementos
Conjunto, Relação entre conjunto, Conjunto e elemento, Elemento, Elemento de um conjunto, Igualdade de conjunto, Relação de inclusão, Relação de pertinência, Contém, Pertence.
Conjunto de dados.
Noções importantes
Noções importantes, Conjuntos, Representação de conjuntos, Conjuntos, Diagrama, Conjunto de números pares, Designação de seus elementos, Propriedades dos elementos, Elementos.
Símbolos usados para representar alguns conjuntos numéricos
O que são conjuntos numéricos?
Descubra o que são conjuntos numéricos e saiba quais são os elementos dos conjuntos dos naturais, inteiros, racionais, irracionais, reais e complexos.
Operações entre Conjuntos
Operações da intersecção, união e diferença entre conjuntos.
Teoria dos Conjuntos
Propriedades dos Conjuntos.
Tipos de conjunto
Confira aqui as características dos diferentes tipos de conjunto: conjunto finito, conjunto infinito, conjunto unitário, conjunto vazio e conjunto universo.